数学分析(十)-定积分的应用2-由平行截面面积求体积1-1:立体Ω的体积的一般计算公式【在任一点x∈[a,b]处作垂直于x轴的平面得Ω的截面面积A=A(x),则:V=∫ₐᵇA(x)dx】

本文介绍了如何使用定积分来求解三维空间中立体的体积,通过在立体Ω位于[a, b]区间内任意点x处作垂直于x轴的截面,得到截面面积函数A(x),进而利用定积分求得立体的体积V=∫ₐᵇA(x)dx。通过举例说明了计算两个圆柱面和椭球面所围立体的体积方法。" 132221929,7380957,ZYNQ复位机制:硬件与软件看门狗解析,"['硬件架构', 'ZYNQ', '复位机制', '看门狗']
摘要由CSDN通过智能技术生成

Ω \Omega Ω 为三维空间中的一立体,它夹在垂直于 x x x 轴的两平面 x = a x=a x=a x = b x=b x=b 之间 ( a < b ) (a<b) (a<b).为方便起见,称 Ω \Omega Ω 为位于 [ a , b ] [a, b] [a,b] 上的立体.

若在任意一点 x ∈ [ a , b ] x \in[a, b] x[a,b] 处作垂直于 x x x 轴的平面, 它截得 Ω \Omega Ω的截面面积显然是 x x x 的函数, 记为 A ( x ) , x ∈ [ a , b ] A(x), x \in[a, b] A(x),x[a,b], 并称之为 Ω \Omega Ω的截面面积函数 (见图 10-9).

本节将导出由截面面积函数求立体体积的一般计算公式旋转体的体积公式.

设截面面积函数 A ( x ) A(x) A(x) [ a , b ] [a, b] [a,b] 上的一个连续函数,且把 Ω \Omega Ω的上述平行截面投影到某一垂直于 x x x轴的平面上,它们永远是一个含在另一个的里面 ① { }^{①} . 对 [ a , b ] [a, b] [a,b] 作分割

T : a = x 0 < x 1 < ⋯ < x n = b . T: a=x_{0}<x_{1}<\cdots<x_{n}=b . T:a=x0<x1<<xn=b.

①:一般还可推广到 Ω \Omega Ω由满足这种假设的若千个立体相加或相减而得的情形. 例如后面将要讨论的流转体就是满足该条件的重要特例.

过各个分点作垂直于 x x x 轴的平面 x = x i , i = 1 , 2 , ⋯   , n x=x_{i}, i=1,2, \cdots, n x=xi,i=1,2,,n, 它们把 Ω \Omega Ω 切揢成 n n n 个溥片 Ω i , i = \Omega_{i}, i= Ωi,i= 1 , 2 , ⋯   , n 1,2, \cdots, n 1,2,,n. 任取 ξ i ∈ [ x i − 1 , x i ] \xi_{i} \in\left[x_{i-1}, x_{i}\right] ξi[xi1,xi], 那么每一薄片的体积 (见图10-10).

Δ V i ≈ A ( ξ i ) Δ x i . \Delta V_{i} \approx A\left(\xi_{i}\right) \Delta x_{i} . ΔViA(ξi)Δxi.

于是

V ≈ ∑ i = 1 n A ( ξ i ) Δ x i V \approx \sum_{i=1}^{n} A\left(\xi_{i}\right) \Delta x_{i} Vi=1nA(ξi)Δxi

在这里插入图片描述

由定积分的定义和连续函数的可积性, 当 ∥ T ∥ → 0 \|T\| \rightarrow 0 T0 时,上式右边的极限存在, 即为函数 A ( x ) A(x) A(x) [ a , b ] [a, b] [a,b] 上的定积分.于是定义立体 Ω \Omega Ω 的体积

V = ∫ a b A ( x ) d x . ( 1 ) V=\int_{a}^{b} A(x) \mathrm{d} x . \quad\quad(1) V=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值