数学分析(二十二)-曲面积分1-第一型曲面积分1:第一型曲面积分的概念【∬ₛf(x,y,z)dS】【曲面积分研究对象:“曲面图形”的积分,积分区域在“曲面”上】

本文介绍了第一型曲面积分的定义,通过类比第一型曲线积分,阐述了曲面块的质量计算方法,并给出当函数f(x,y,z)恒等于1时,曲面积分表示曲面本身面积的特性。" 128823638,1023349,TOGAF认证考试攻略:解题思路与技巧,"['TOGAF', '架构认证', '考试技巧', '案例分析']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

类似于第一型曲线积分, 当质量分布在某一曲面块 S S S (设密度函数 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) S S S 上连续) 时, 曲面块 S S S 的质量为

lim ⁡ ∥ T ∥ → 0 ∑ i = 1 n ρ ( ξ i , η i , ζ i ) Δ S i , \lim \limits_{\|T\| \rightarrow 0} \sum_{i=1}^{n} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i}, T0limi=1nρ(ξi,ηi,ζi)ΔSi,

其中 T = { S 1 , S 2 , ⋯   , S n } T=\left\{S_{1}, S_{2}, \cdots, S_{n}\right\} T={ S1,S2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值