类似于第一型曲线积分, 当质量分布在某一曲面块 S S S (设密度函数 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) 在 S S S 上连续) 时, 曲面块 S S S 的质量为
lim ∥ T ∥ → 0 ∑ i = 1 n ρ ( ξ i , η i , ζ i ) Δ S i , \lim \limits_{\|T\| \rightarrow 0} \sum_{i=1}^{n} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i}, ∥T∥→0limi=1∑nρ(ξi,ηi,ζi)ΔSi,
其中 T = { S 1 , S 2 , ⋯ , S n } T=\left\{S_{1}, S_{2}, \cdots, S_{n}\right\} T={ S1,S2

本文介绍了第一型曲面积分的定义,通过类比第一型曲线积分,阐述了曲面块的质量计算方法,并给出当函数f(x,y,z)恒等于1时,曲面积分表示曲面本身面积的特性。"
128823638,1023349,TOGAF认证考试攻略:解题思路与技巧,"['TOGAF', '架构认证', '考试技巧', '案例分析']
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



