§ 6 实对称矩阵的标准形
在第五章我们得到, 任意一个对称矩阵都合同于一个对角矩阵, 换句话说,
都有一个可逆矩阵 C \boldsymbol{C} C, 使
C ⊤ A C C^{\top} A C C⊤AC
成对角形. 现在利用欧氏空间的理论, 第五章中关于实对称矩阵的结果可以加强.
这一节的主要结果是:
对于任意一个 n n n 阶实对称矩阵 A \boldsymbol{A} A, 都存在一个 n n n
阶正交矩阵 T T T, 使
T T A ˙ T ˙ = T ˙ − i A T ˙ T^{\mathrm{T}} \dot{A} \dot{T}=\dot{T}^{-i} A \dot{T} TTA˙T˙=T˙−iAT˙
成对角形.
先讨论对称矩阵的一些性质, 它们本身在今后也是非常有用的.
我们把它们归纳成下面几个引理.
引理 1 设 A \boldsymbol{A} A 是实对称矩阵, 则 A \boldsymbol{A} A
的复特征值皆为实数.
证明 设 λ 0 \lambda_{0} λ0 是 A \boldsymbol{A} A 的一个特征值,于是有非零向量
ξ = ( x 1 x 2 ⋮ x n ) \boldsymbol{\xi}=\left(\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right) ξ=
x1x2⋮xn
满足
A ξ = λ 0 ξ . \boldsymbol{A} \boldsymbol{\xi}=\lambda_{0} \boldsymbol{\xi} . Aξ=λ0ξ.
ξ ˉ = ( x ˉ 1 x ˉ 2 ⋮ x ˉ n ) , \bar{\xi}=\left(\begin{array}{c} \bar{x}_{1} \\ \bar{x}_{2} \\ \vdots \\ \bar{x}_{n} \end{array}\right) \text {, } ξˉ=
xˉ1xˉ2⋮xˉn
,
其中 x ˉ i \bar{x}_{i} xˉi 是 x i x_{i} xi 的共轭复数, 则
A ξ ‾ = λ ˉ 0 ξ ˉ \overline{A \xi}=\bar{\lambda}_{0} \bar{\xi} Aξ=λˉ0ξˉ.
考察等式
ξ ˉ T ( A ξ ) = ξ ‾ T A T ξ = ( A ξ ‾ ) T ξ = ( A ξ ‾ ) T ξ , \bar{\xi}^{\mathrm{T}}(\boldsymbol{A} \boldsymbol{\xi})=\overline{\boldsymbol{\xi}}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{\xi}=(\boldsymbol{A} \overline{\boldsymbol{\xi}})^{\mathrm{T}} \boldsymbol{\xi}=(\overline{\boldsymbol{A} \boldsymbol{\xi}})^{\mathrm{T}} \boldsymbol{\xi}, ξˉT(Aξ)=ξTATξ=(Aξ)Tξ=(Aξ)Tξ,
其左边为 λ 0 ξ ˉ ⊤ ξ \lambda_{0} \bar{\xi}^{\top} \xi λ0ξˉ⊤ξ, 右边为
λ ˉ 0 ξ ˉ ⊤ ξ \bar{\lambda}_{0} \bar{\xi}^{\top} \xi λˉ0ξˉ⊤ξ. 故
λ 0 ξ ˉ ⊤ ξ = λ ˉ 0 ξ ˉ ⊤ ξ . \lambda_{0} \bar{\xi}^{\top} \xi=\bar{\lambda}_{0} \bar{\xi}^{\top} \xi . λ0ξˉ⊤ξ=λˉ0ξˉ⊤ξ.
又因 ξ \boldsymbol{\xi} ξ 是非零向量,
ξ ‾ T ξ = x ˉ 1 x 1 + x ˉ 2 x 2 + ⋯ + x ˉ n x n ≠ 0. \overline{\boldsymbol{\xi}}^{\mathrm{T}} \boldsymbol{\xi}=\bar{x}_{1} x_{1}+\bar{x}_{2} x_{2}+\cdots+\bar{x}_{n} x_{n} \neq 0 . ξTξ=xˉ1x1+xˉ2x2+⋯+xˉnxn=0.
故 λ 0 = λ ˉ 0 \lambda_{0}=\bar{\lambda}_{0} λ0=λˉ0, 即 λ 0 \lambda_{0} λ0 是一个实数.
对应于实对称矩阵 A \boldsymbol{A} A, 在 n n n 维欧氏空间 R n \mathbf{R}^{n} Rn
上定义一个线性变换 A \mathcal{A} A 为
A ( x 1 x 2 ⋮ x n ) = A ( x 1 x 2 ⋮ x n ) . \boldsymbol{A}\left(\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right)=\boldsymbol{A}\left(\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right) . A
x1x2⋮xn
=A
x1x2⋮xn
.
显然 A \mathcal{A} A 在标准正交基
ε 1 = ( 1 0 ⋮ 0 ) , ε 2 = ( 0 1 ⋮ 0 ) , ⋯ , ε n = ( 0 0 ⋮ 1 ) \varepsilon_{1}=\left(\begin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array}\right), \quad \varepsilon_{2}=\left(\begin{array}{c} 0 \\ 1 \\ \vdots \\ 0 \end{array}\right), \quad \cdots, \quad \varepsilon_{n}=\left(\begin{array}{c} 0 \\ 0 \\ \vdots \\ 1 \end{array}\right) ε1=
10⋮0
,ε2=
01⋮0
,⋯,εn=
00⋮1
下的矩阵就是 A \boldsymbol{A} A.
引理 2 设 A \boldsymbol{A} A 是实对称矩阵, A \mathscr{A} A 的定义如上,
则对任意 α , β ∈ R n \alpha, \beta \in \mathbf{R}^{n} α,β∈Rn, 有
( A α , β ) = ( α , A β ) , (\mathscr{A} \boldsymbol{\alpha}, \boldsymbol{\beta})=(\boldsymbol{\alpha}, \mathscr{A} \boldsymbol{\beta}) \text {, } (Aα,β)=(α,Aβ),
或
β ⊤ ( A α ) = α ⊤ A β \boldsymbol{\beta}^{\top}(\boldsymbol{A} \boldsymbol{\alpha})=\boldsymbol{\alpha}^{\top} \boldsymbol{A} \boldsymbol{\beta} β⊤(Aα)=α⊤Aβ
证明 只要证明后一等式就行了. 实际上
β ⊤ ( A α ) = β T A ⊤ α = ( A β ) T α = α T ( A β ) . I \boldsymbol{\beta}^{\top}(\boldsymbol{A} \boldsymbol{\alpha})=\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{A}^{\top} \boldsymbol{\alpha}=(\boldsymbol{A} \boldsymbol{\beta})^{\mathrm{T}} \boldsymbol{\alpha}=\boldsymbol{\alpha}^{\mathrm{T}}(\boldsymbol{A} \boldsymbol{\beta}) \text {. I } β⊤(Aα)=βTA⊤α=(Aβ)Tα=αT(Aβ). I
等式 (3) 把实对称矩阵的特性反映到线性变换上.我们引人
定义 12 欧氏空间中满足等式 (3) 的线性变换称为对称变换.
容易看出, 对称变换在标准正交基下的矩阵是实对称矩阵.
用对称变换来反映实对称矩阵,一些性质可以看得更清楚.
引理 3 设 A \mathscr{A} A 是对称变换, V 1 V_{1} V1 是 A \mathscr{A} A-子空间, 则
V 1 V_{1} V1 也是 A \mathscr{A} A-子空间.
证明 设 α ∈ V 1 ⊥ \alpha \in V_{1}{ }^{\perp} α∈V1⊥, 要证
A α ∈ V 1 ⊥ \mathcal{A} \boldsymbol{\alpha} \in V_{1}{ }^{\perp} Aα∈V1⊥, 即
A α ⊥ V 1 \mathcal{A} \boldsymbol{\alpha} \perp V_{1} Aα⊥V1. 任取
β ∈ V 1 \boldsymbol{\beta} \in V_{1} β∈V1, 都有
A β ∈ V 1 \boldsymbol{A} \boldsymbol{\beta} \in V_{1} Aβ∈V1. 因
α ⊥ V 1 \boldsymbol{\alpha} \perp V_{1} α⊥V1,故
( α , A β ) = 0 (\boldsymbol{\alpha}, \mathscr{A} \boldsymbol{\beta})=0 (α,Aβ)=0. 因此
( A α , β ) = ( α , A β ) = 0 , (\mathscr{A} \boldsymbol{\alpha}, \boldsymbol{\beta})=(\boldsymbol{\alpha}, \mathscr{A} \boldsymbol{\beta})=0, (Aα,β)=(α,Aβ)=0,
即
A α ⊥ V 1 , A α ∈ V 1 ⊥ , V 1 ⊥ \mathscr{A} \alpha \perp V_{1}, \mathscr{A} \alpha \in V_{1}{ }^{\perp}, V_{1}{ }^{\perp} Aα⊥V1,Aα∈V1⊥,V1
高等代数(九)-欧几里得空间06:实对称矩阵的标准形
最新推荐文章于 2024-02-07 21:02:18 发布