概率论与数理统计教程(四)-大数定理与中心极限定理01:随机变量序到的两种收敛性

本文介绍了随机变量序列的两种收敛性——依概率收敛和按分布收敛,重点探讨了它们在概率论中的应用,特别是在大数定律和中心极限定理中的角色。依概率收敛描述了随机变量序列接近某个值的概率趋势,而按分布收敛关注的是整个序列的分布形状。这两个概念不仅是概率论的基础,也在数理统计中扮演重要角色。文章通过实例解析了这两种收敛性的数学定义,并展示了它们在处理随机变量序列时的行为特点。
摘要由CSDN通过智能技术生成

§ 4.1 随机变量序列的两种收敛性
随机变量序列的收玫性有多种,其中常用的是两种:
依概率收玫和按分布收玫.本章讨论的大数定律涉及的是一种依概率收玫,
中心极限定理涉及按分布收玫. 这些极限定理不仅是概率论研究的中心议题,
而且在数理统计中有广泛的应用.
本节将给出这两种收玫性的定义及其有关性质,读者应从中吸收其思考问题的方法.
4.1.1 依概率收敛
在第一章用频率确定概率时, 我们提出 “概率是频率的稳定值”, 或
“频率稳定于概率”.现在我们来解释 “稳定” 的含义及其数学表达式.
设有一大批产品, 其不合格品率为 p p p. 现一个接一个地检查产品的合格性, 记前
n n n次检查发现 S n S_{n} Sn 个不合格品, 而 v n = S n / n v_{n}=S_{n} / n vn=Sn/n
为不合格品出现的频率. 当检查继续下去, 我们就发现频率序列
{ v n } \left\{v_{n}\right\} { vn} 有如下两个现象:
(1) 频率 v n v_{n} vn 对概率 p p p 的绝对偏差 ∣ v n − p ∣ \left|v_{n}-p\right| vnp 将随 n n n
增大而呈现逐渐减小的趋势, 但无法说它收玫于零.
(2)由于频率的随机性, 绝对偏差 ∣ v n − p ∣ \left|v_{n}-p\right| vnp 时大时小.
虽然我们无法排除大偏差发生的可能性, 但随着 n n n 不断增大,
大偏差发生的可能性会越来越小. 这是一种新的极限概念.
下面我们用数学式子将上述概念表达出来.对任意给定的 ε > 0 \varepsilon>0 ε>0, 事件
{ ∣ v n − p ∣ ⩾ ε } \left\{\left|v_{n}-p\right| \geqslant \varepsilon\right\} { vnpε}出现了就认为大偏差发生了.
而大偏差发生的可能性越来越小, 相当于
P ( ∣ v n − p ∣ ⩾ ε ) → 0 , ( n → ∞ ) . P\left(\left|v_{n}-p\right| \geqslant \varepsilon\right) \rightarrow 0,(n \rightarrow \infty) . P(vnpε)0,(n).
这时就可称频率序列 { v n } \left\{v_{n}\right\} { vn} 依概率收敛. 这就是
“频率稳定于概率” 的含义.
下面给出一般的随机变量序列 { X n } \left\{X_{n}\right\} { Xn}
依概率收玫于一个随机变量 X X X 的定义.
定义 4.1.1 设 { X n } \left\{X_{n}\right\} { Xn} 为一随机变量序列, X X X 为一随机变量,
如果对任意的 ε > 0 \varepsilon>0 ε>0, 有
P ( ∣ X n − X ∣ ⩾ ε ) → 0 ( n → ∞ ) , P\left(\left|X_{n}-X\right| \geqslant \varepsilon\right) \rightarrow 0(n \rightarrow \infty), P(XnXε)0(n),
则称序列 { X n } \left\{X_{n}\right\} { Xn} 依概率收敛于 X X X, 记作
X n → P X X_{n} \xrightarrow{P} X XnP X.
依概率收玫的含义是: X n X_{n} Xn X X X
的绝对偏差不小于任一给定量的可能性将随着 n n n
增大而愈来愈小. 或者说, 绝对偏差 ∣ X n − X ∣ \left|X_{n}-X\right| XnX
小于任一给定量的可能性将随着 n n n 增大而愈来愈接近于 1 , 即 ( 4.1.1 ) (4.1 .1) (4.1.1)
等价于
P ( ∣ X n − X ∣ < ε ) → 1 ( n → ∞ ) . P\left(\left|X_{n}-X\right|<\varepsilon\right) \rightarrow 1(n \rightarrow \infty) . P(XnX<ε)1(n).
特别当 X X X 为退化分布时, 即 P ( X = c ) = 1 P(X=c)=1 P(X=c)=1, 则称序列 { X n } \left\{X_{n}\right\} { Xn}
依概率收玫于 c c c, 即 X n → P c X_{n} \xrightarrow{P} c XnP c.
以下我们先给出依概率收玫于常数的四则运算性质.
定理 4.1.1 设 { X n } , { Y n } \left\{X_{n}\right\},\left\{Y_{n}\right\} { Xn},{ Yn}
是两个随机变量序列, a , b a, b a,b 是两个常数. 如果
X n → P a , Y n → P b , X_{n} \xrightarrow{P} a, \quad Y_{n} \xrightarrow{P} b, XnP a,YnP b,
则有: (1) X n ± Y n → P a ± b X_{n} \pm Y_{n} \xrightarrow{P} a \pm b Xn±YnP a±b;
(2) X n × Y n → P a × b X_{n} \times Y_{n} \xrightarrow{P} a \times b Xn×YnP a×b;
(3) X n ÷ Y n → P a ÷ b ( b ≠ 0 ) X_{n} \div Y_{n} \xrightarrow{P} a \div b(b \neq 0) Xn÷YnP a÷b(b=0).
证明 (1) 因为
{ ∣ ( X n + Y n ) − ( a + b ) ∣ ⩾ ε } ⊂ { ∣ X n − a ∣ ⩾ ε 2 } ∪ { ∣ Y n − b ∣ ⩾ ε 2 } , \left\{\left|\left(X_{n}+Y_{n}\right)-(a+b)\right| \geqslant \varepsilon\right\} \subset\left\{\left|X_{n}-a\right| \geqslant \frac{\varepsilon}{2}\right\} \cup\left\{\left|Y_{n}-b\right| \geqslant \frac{\varepsilon}{2}\right\}, { (Xn+Yn)(a+b)ε}{ Xna2ε}{ Ynb2ε},
所以
0 ⩽ P ( ∣ ( X n + Y n ) − ( a + b ) ∣ ⩾ ε ) ⩽ P ( ∣ X n − a ∣ ⩾ ε 2 ) + P ( ∣ Y n − b ∣ ⩾ ε 2 ) → 0 ( n → ∞ ) , \begin{aligned} 0 & \leqslant P\left(\left|\left(X_{n}+Y_{n}\right)-(a+b)\right| \geqslant \varepsilon\right) \\ & \leqslant P\left(\left|X_{n}-a\right| \geqslant \frac{\varepsilon}{2}\right)+P\left(\left|Y_{n}-b\right| \geqslant \frac{\varepsilon}{2}\right) \rightarrow 0 \quad(n \rightarrow \infty), \end{aligned} 0P((Xn+Yn)(a+b)ε)P(Xna2ε)+P(Ynb2ε)0(n),

P ( ∣ ( X n + Y n ) − ( a + b ) ∣ < ε ) → 1 ( n → ∞ ) , P\left(\left|\left(X_{n}+Y_{n}\right)-(a+b)\right|<\varepsilon\right) \rightarrow 1 \quad(n \rightarrow \infty), P((Xn+Yn)(a+b)<ε)1(n),
由此得 X n + Y n → P a + b X_{n}+Y_{n} \xrightarrow{P} a+b Xn+YnP a+b. 类似可证
X n − Y n → P a − b X_{n}-Y_{n} \xrightarrow{P} a-b XnYnP ab.
(2) 为了证明 X n × Y n → P a × b X_{n} \times Y_{n} \xrightarrow{P} a \times b Xn×YnP a×b,
我们分几步进行:
i) 若 X n → P 0 X_{n} \xrightarrow{P} 0 XnP 0, 则有 X n 2 → P 0 X_{n}^{2} \xrightarrow{P} 0 Xn2P 0.
这是因为对任意 ε > 0 \varepsilon>0 ε>0, 有
P ( ∣ X n 2 ∣ ⩾ ε ) = P ( ∣ X n ∣ ⩾ ε ) → 0 ( n → ∞ ) . P\left(\left|X_{n}^{2}\right| \geqslant \varepsilon\right)=P\left(\left|X_{n}\right| \geqslant \sqrt{\varepsilon}\right) \rightarrow 0 \quad(n \rightarrow \infty) . P( Xn2 ε)=P(Xnε )0(n).
ii) 若 X n → P a X_{n} \xrightarrow{P} a XnP a, 则有 c X n → P c a c X_{n} \xrightarrow{P} c a cXnP ca.
这是因为在 c ≠ 0 c \neq 0 c=0 时, 有
P ( ∣ c X n − c a ∣ ⩾ ε ) = P ( ∣ X n − a ∣ ⩾ ε / ∣ c ∣ ) → 0 ( n → ∞ ) , P\left(\left|c X_{n}-c a\right| \geqslant \varepsilon\right)=P\left(\left|X_{n}-a\right| \geqslant \varepsilon /|c|\right) \rightarrow 0 \quad(n \rightarrow \infty), P(cXncaε)=P(Xn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值