数学分析(十三)-函数列与函数项级数1-一致收敛性2-函数项级数2:一致收敛性【Σuₙ(x)的“和函数”记为S(x)】【充要条件:lim_{n→∞}sup_{x∈D}|S(x)-Sₙ(x)|=0】

本文详细介绍了数学分析中函数项级数的一致收敛性,包括柯西准则和其推论。一致收敛的充要条件是当n趋向无穷时,函数项级数的余项的上确界趋于零。举例说明了级数在不同区间内的不一致收敛和内闭一致收敛情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理 13.3 (一致收敛的柯西准则)

函数项级数 ∑ u n ( x ) \sum u_{n}(x) un(x) 在数集 D D D上一致收敛的充要条件为: 对任给的正数 ε \varepsilon ε, 总存在某正整数 N N N,使得当 n > N n>N n>N 时, 对一切 x ∈ D x \in D xD 和一切正整数 p p p, 都有

∣ S n + p ( x ) − S n ( x ) ∣ < ε \left|S_{n+p}(x)-S_{n}(x)\right|<\varepsilon Sn+p(x)Sn(x)<ε

∣ u n + 1 ( x ) + u n + 2 ( x ) + ⋯ + u n + p ( x ) ∣ < ε . \left|u_{n+1}(x)+u_{n+2}(x)+\cdots+u_{n+p}(x)\right|<\varepsilon . un+1(x)+un+2(x)++un+p(x)<ε.

此定理中当 p = 1 p=1 p=1 时, 得到函数项级数一致收敛的一个必要条件.

推论

函数项级数 ∑ u n ( x ) \sum u_{n}(x) un(x) 在数集 D D D 上一致收敛的必要条件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值