定理 13.3 (一致收敛的柯西准则)
函数项级数 ∑ u n ( x ) \sum u_{n}(x) ∑un(x) 在数集 D D D上一致收敛的充要条件为: 对任给的正数 ε \varepsilon ε, 总存在某正整数 N N N,使得当 n > N n>N n>N 时, 对一切 x ∈ D x \in D x∈D 和一切正整数 p p p, 都有
∣ S n + p ( x ) − S n ( x ) ∣ < ε \left|S_{n+p}(x)-S_{n}(x)\right|<\varepsilon ∣Sn+p(x)−Sn(x)∣<ε
或
∣ u n + 1 ( x ) + u n + 2 ( x ) + ⋯ + u n + p ( x ) ∣ < ε . \left|u_{n+1}(x)+u_{n+2}(x)+\cdots+u_{n+p}(x)\right|<\varepsilon . ∣un+1(x)+un+2(x)+⋯+un+p(x)∣<ε.
此定理中当 p = 1 p=1 p=1 时, 得到函数项级数一致收敛的一个必要条件.
推论
函数项级数 ∑ u n ( x ) \sum u_{n}(x) ∑un(x) 在数集 D D D 上一致收敛的必要条件