实变函数论3-测度论3-可测集类11:设E是任一可测集,则一定存在Gᵩ型集G,使G⊃E,且m(G\E)= 0

在前一节中,我们定义了可测集合,并且讨论了可测集合的一些性质,但是在一般常见的集合中有哪些是可测的呢?我们现在来回答这个问题


根据博雷尔集的定义,博雷尔集全体已构成一个 σ \sigma σ代数. 但是可以证明,并非每个 L L L 可测集都是博雷尔集。

那么 L L L可测集合类中除了博雷尔集之外,究竟还包含一些怎样的集合呢?

定理5

E E E 是任一可测集,则一定存在 G δ G _ { \delta } Gδ 型集 G , G , G, 使 G ⊃ E , G \supset E , GE, m ( G \ E ) = 0. m ( G \backslash E ) = 0 . m(G\E)=0.

证明
(1)先证:对于任意 ε > 0 , \varepsilon > 0 , ε>0, 存在开集 G , G , G, 使 G ⊃ E , G \supset E , GE, m ( G \ E ) < ε . m ( G \backslash E ) < \varepsilon . m(G\E)<ε.

为此,先设 m E < ∞ , m E < \infty , mE<, 则由测度定义,有一列开区间 { I i } ( i = 1 , 2 , ⋯   ) , \left\{ I _ { i } \right\} ( i = 1 , 2 , \cdots ) , { Ii}(i=1,2,), 使 ⋃ i = 1 ∞ I i ⊃ E , \bigcup _ { i = 1 } ^ { \infty } I _ { i } \supset E , i=1IiE,

∑ i = 1 ∞ ∣ I i ∣ < m E + ε . \sum _ { i = 1 } ^ { \infty } \left| I _ { i } \right| < m E + \varepsilon . i=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值