C++ Dlib Landmark 人脸关键点检测

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013256713/article/details/77498846

使用Opencv和dlib实现人脸关键点检测


#include "stdafx.h"
#include <dlib/opencv.h>  
#include <opencv2/opencv.hpp>  
#include <dlib/image_processing/frontal_face_detector.h>  
#include <dlib/image_processing/render_face_detections.h>  
#include <dlib/image_processing.h>  
#include <dlib/gui_widgets.h>  
#include "opencv2/opencv.hpp"
#include <iostream>

using namespace dlib;
using namespace std;
using namespace cv;

#define RATIO 4  
#define SKIP_FRAMES 2  


void draw_polyline(cv::Mat &img, const dlib::full_object_detection& d, const int start, const int end, bool isClosed = false)
{
	std::vector <cv::Point> points;
	for (int i = start; i <= end; ++i)
	{
		points.push_back(cv::Point(d.part(i).x(), d.part(i).y()));
	}
	cv::polylines(img, points, isClosed, cv::Scalar(255, 0, 0), 2, 16);

}

void render_face(cv::Mat &img, const dlib::full_object_detection& d)
{
	DLIB_CASSERT
	(
		d.num_parts() == 68,
		"\n\t Invalid inputs were given to this function. "
		<< "\n\t d.num_parts():  " << d.num_parts()
	);

	draw_polyline(img, d, 0, 16);           // Jaw line
	draw_polyline(img, d, 17, 21);          // Left eyebrow
	draw_polyline(img, d, 22, 26);          // Right eyebrow
	draw_polyline(img, d, 27, 30);          // Nose bridge
	draw_polyline(img, d, 30, 35, true);    // Lower nose
	draw_polyline(img, d, 36, 41, true);    // Left eye
	draw_polyline(img, d, 42, 47, true);    // Right Eye
	draw_polyline(img, d, 48, 59, true);    // Outer lip
	draw_polyline(img, d, 60, 67, true);    // Inner lip

}

int main()
{
	try
	{
		cv::VideoCapture cap(0);
		//image_window win;
		//cap.set(CV_CAP_PROP_FRAME_WIDTH, 640);  
		//cap.set(CV_CAP_PROP_FRAME_HEIGHT, 480);  
		// Load face detection and pose estimation models.  
		frontal_face_detector detector = get_frontal_face_detector();
		shape_predictor pose_model;
		deserialize("shape_predictor_68_face_landmarks.dat") >> pose_model;

		int count = 0;
		std::vector<dlib::rectangle> faces;
		// Grab and process frames until the main window is closed by the user. 


		//while (!win.is_closed())
		while (1)
		{
			// Grab a frame  
			cv::Mat img, img_small;
			cap >> img;
			cv::resize(img, img_small, cv::Size(), 1.0 / RATIO, 1.0 / RATIO);

			cv_image<bgr_pixel> cimg(img);
			cv_image<bgr_pixel> cimg_small(img_small);

			// Detect faces   
			if (count++ % SKIP_FRAMES == 0) {
				faces = detector(cimg_small);
			}
			// Find the pose of each face.  
			std::vector<full_object_detection> shapes;
			for (unsigned long i = 0; i < faces.size(); ++i) {
				dlib::rectangle r(
					(long)(faces[i].left() * RATIO),
					(long)(faces[i].top() * RATIO),
					(long)(faces[i].right() * RATIO),
					(long)(faces[i].bottom() * RATIO)
				);
				// Landmark detection on full sized image
				full_object_detection shape = pose_model(cimg, r);
				shapes.push_back(shape);

				// Custom Face Render
				render_face(img, shape);
			}
			//std::cout << "count:" << count << std::endl;
			//Display it all on the screen  
			//win.clear_overlay();
			//win.set_image(img);
			//win.add_overlay(render_face_detections(shapes));

			//If the frame is empty, break immediately
				if (img.empty())
					break;

			// Display the resulting frame
			imshow("Frame", img);

			// Press  ESC on keyboard to exit
			char c = (char)waitKey(25);
			if (c == 27)
				break;
		}
	}
	catch (serialization_error& e)
	{
		cout << "You need dlib's default face landmarking model file to run this example." << endl;
		cout << "You can get it from the following URL: " << endl;
		cout << "   http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;
		cout << endl << e.what() << endl;
	}
	catch (exception& e)
	{
		cout << e.what() << endl;
	}
	system("pause");
}


展开阅读全文

没有更多推荐了,返回首页