热心市民小磊
码龄11年
关注
提问 私信
  • 博客:177,760
    动态:3
    177,763
    总访问量
  • 37
    原创
  • 1,113,536
    排名
  • 89
    粉丝
  • 0
    铁粉

个人简介:做一个技术宅

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2013-12-26
博客简介:

u013289615的博客

查看详细资料
个人成就
  • 获得153次点赞
  • 内容获得25次评论
  • 获得596次收藏
创作历程
  • 17篇
    2020年
  • 20篇
    2019年
成就勋章
TA的专栏
  • 考研数学微积分
    10篇
  • 考研数学线代
    1篇
  • 考研数学概率论
  • Github
    6篇
  • python网络爬虫篇
    4篇
  • python基础积累
    2篇
  • python实用功能
    2篇
  • python:office篇
    3篇
  • 考研
    4篇
  • 书籍
    2篇
  • 手机自动化
    4篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

中值定理如何构建辅助函数

中值定理如何构建辅助函数作者:小海考研人很多同学看到中值定理就犯怵,确实证明题一直是学生的软肋,并且 20 年数三考了一道中值定理题,是比较有难度的,想拿满分很难,如果有兴趣的同学…可以等学长有时间会进行解析,尽量通俗易懂不劝退。但是我们不能因为中值定理难就放弃,想考高分,我们依然要迎难而上。今天这篇重点讲一下利用罗尔定理、费马定理可解决的一类中值问题,如何构建辅助函数。即证明存在 ξ∈(a,b),\xi \in(a, b),ξ∈(a,b), 使得:H(ξ,f(ξ),f′(ξ))=0H\left
原创
发布博客 2020.12.01 ·
6629 阅读 ·
3 点赞 ·
1 评论 ·
21 收藏

导数概念中的易错题

导数概念中的易错题作者:小海考研人一道易错的题目,不要忽视导数的定义,往往定义是最容易忽视的,有关导数的定义问题是考研的重中之重!有一个常见问题,如下:lim⁡n→∞f(x+1n)−f(x)1n=A\lim _{n \rightarrow \infty} \frac{f\left(x+\frac{1}{n}\right)-f(x)}{\frac{1}{n}}=An→∞lim​n1​f(x+n1​)−f(x)​=A则 f(x)f(x)f(x) 在点 xxx 处的导数是 AAA。这句话是错误的,
原创
发布博客 2020.12.01 ·
501 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

导数符号内外的区别

导数符号内外的区别作者:小海考研人对于求导最重要的是搞清楚自变量和因变量,这里我们讲讲f′(x)f^{\prime}(x)f′(x) 与 [f(x)]′[f(x)]^{\prime}[f(x)]′ 的区别对于单变量而言,两者没有区别对于多变量而言,两者不同。可以假设 z=f(y)z=f(y)z=f(y),而 yyy 是 xxx 的函数,即 y=g(x)y=g(x)y=g(x)。那么 f′(y)=dzdyf^{\prime}(y)=\frac{dz}{dy}f′(y)=dydz​,而[f(y
原创
发布博客 2020.12.01 ·
5240 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

单调有界证明

单调有界证明作者:小海考研人①证单调可以对通项求导,例如数列{un}=1n\left\{ u_n \right\} =\frac{1}{n}{un​}=n1​,这里构建函数f(x)=1xf\left( x \right) =\frac{1}{x}f(x)=x1​,对其求导 f′(x)=−1x2<0f'\left( x \right) =-\frac{1}{x^2}<0f′(x)=−x21​<0可证单调递减。注意对递推式也可以求导判断单调,不过需要判别a2a_2a2​和 a1a_1a1
原创
发布博客 2020.12.01 ·
1770 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

关于函数内部是否可以用等价无穷小的问题

关于函数内部是否可以用等价无穷小的问题作者:小海考研人例如 :lim⁡x→0ln⁡(ex−1)ln⁡(ln⁡(1+x))\lim_{x\rightarrow 0} \frac{\ln \left( e^x-1 \right)}{\ln \left( \ln \left( 1+x \right) \right)}x→0lim​ln(ln(1+x))ln(ex−1)​是否可以用 ex−1∼xe^x-1\sim xex−1∼x变为: lim⁡x→0ln⁡xln⁡(ln⁡(1+x))\lim_{x\ri
原创
发布博客 2020.12.01 ·
8106 阅读 ·
8 点赞 ·
3 评论 ·
27 收藏

洛必达法则使用条件

洛必达法则使用条件作者:小海考研人先看一道题:设 f(x)、g(x)f(x) 、g(x)f(x)、g(x) 在 x=0x=0x=0 的某邻域内连续,且 lim⁡x→0f(x)x=−1\lim _{x \rightarrow 0} \frac{f(x)}{x}=-1limx→0​xf(x)​=−1 ,lim⁡x→0g(x)f2(x)=1\lim _{x \rightarrow 0} \frac{g(x)}{f^{2}(x)}=1limx→0​f2(x)g(x)​=1 ,则 g′(0)g^{\prime
原创
发布博客 2020.12.01 ·
2334 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

求解渐近线的方法

求解渐近线的方法作者:小海考研人① 先求 xxx 趋于无穷的情况,若limx→∞f(x)=C\underset{x\rightarrow \infty}{lim}f\text{(}x\text{)}=Cx→∞lim​f(x)=C,则有水平渐近线 y=Cy=Cy=C;若 lim⁡x→∞f(x)=∞\lim _{x \rightarrow \infty} f(x)=\inftylimx→∞​f(x)=∞,则继续进行,若lim⁡x→∞f(x)x=k≠0\lim _{x \rightarrow \infty}
原创
发布博客 2020.12.01 ·
6006 阅读 ·
10 点赞 ·
0 评论 ·
16 收藏

整体代入问题

整体代入问题作者:小海考研人整体代入就是把非 0 的值直接代入,条件跟等价替换一样,需要整体乘除,其实你可以把整体代入和等价看成一个问题,两者没有本质的区别,只要注意不能代入 0 即可。关于有时候加减也能整体代入,此情况分析跟等价一致,这里不再赘述。等价和整体代入问题其实就是极限可不可拆问题,捋顺了极限可拆条件,两者就迎刃而解了。...
原创
发布博客 2020.12.01 ·
394 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

等价替换问题

等价替换问题作者:小海考研人我们知道整体乘除才可以用等价,但是做题时,很多同学要吗忘记这个前提条件,要吗发现答案在加减的时候也用等价了,这时候就感到非常困惑,这里详细分析一下。例如一个极限题:lim⁡x→0(xsin⁡x+tan⁡xx)\underset{x\rightarrow 0}{\lim}\left( \frac{x}{\sin x}+\frac{\tan x}{x} \right)x→0lim​(sinxx​+xtanx​)这里可不可以把 sin⁡x∼x,tan⁡x∼x\sin x\
原创
发布博客 2020.12.01 ·
961 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

极限可拆问题

极限可拆问题作者:小海考研人使用极限的四则运算法则时,应注意它们的条件,当每个函数的极限都存在时,才可使用和、差、积的极限法则。拆成加或减时,只要拆开后的两项或多项,各自的极限存在,也就是说各自的极限没有无穷大的情形,就大胆的拆,没有问题,满足运算条件。lim⁡x→0(x+tan⁡xsin⁡x)=lim⁡x→0x+lim⁡x→0tan⁡xsin⁡x=0+1=1\underset{x\rightarrow 0}{\lim}\left( x+\frac{\tan x}{\sin x} \right
原创
发布博客 2020.12.01 ·
4574 阅读 ·
11 点赞 ·
2 评论 ·
43 收藏

书籍分享

书籍分享0.Python3.6.5标准库文档(完整中文版).pdf链接:https://pan.baidu.com/s/1joUcyLnuI13q5NHUxUWZWg提取码:pxsu1.Python参考手册第4版.pdf链接:https://pan.baidu.com/s/1hxl9Ti4KmznDjVA4qojReQ提取码:suxr2.Python基础教程(第3版).pdf链接:https://pan.baidu.com/s/1X09Ig3vtAZDnebyJIGm78w提取码:laga
原创
发布博客 2020.08.24 ·
827 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

适合初学者的xpath基础介绍

基础xpath简介XPath 是一门在 XML 文档中查找信息的语言。XPath 可用来在 XML 文档中对元素和属性进行遍历。XPath 是 W3C XSLT 标准的主要元素,并且 XQuery 和 XPointer 都构建于 XPath 表达之上。因此,对 XPath 的理解是很多高级 XML 应用的基础。推荐工具浏览器插件:XPath Helper阅读xml软件:SketchP...
原创
发布博客 2020.04.28 ·
289 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SQL数据库基础

github项目:https://github.com/lei940324/toy/blob/master/笔记/SQL基本语法.mdSQL基本语法查看数据库:SHOW DATABASES;创建数据库:CREATE DATEBASE 数据库名称;使用数据库:USE 数据库名称;查看数据表:SHOW TABLES;创建数据表:CREATE TABLE 表名称(列名1 (数据类型1)...
原创
发布博客 2020.04.28 ·
268 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

编程之道

编程之道github项目:https://github.com/lei940324/toy/blob/master/笔记/编程之道.md代码风格参考官方:PEP 8 – Style Guide for Python Codepython之禅Python里输入import this结果为:Beautiful is better than ugly.# 优美胜于丑陋(Pytho...
原创
发布博客 2020.04.28 ·
430 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

适合初学者的pandas总结

github项目:https://github.com/lei940324/toy/blob/master/笔记/pandas总结.md pandas总结 基本操作 导入库 读取文件 读取excel文件 读取csv文件 读取txt文件 读取数据库sql文件 保存文件 保存为excel文件 保存为csv文件 清洗数据 按选定列去重 更改索引 ...
原创
发布博客 2020.04.28 ·
465 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

简单几步学会Git

Github项目:https://github.com/lei940324/toy/blob/master/笔记/Git入门.md公众号:https://mp.weixin.qq.com/s/3p8Hut4l9_0oFb6gk8cfcw背景如果你用Microsoft Word写过长篇大论,那你一定有这样的经历:想删除一个段落,又怕将来想恢复找不回来怎么办?有办法,先把当前文件“另存为……”...
原创
发布博客 2020.04.28 ·
164 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

分位数Granger因果检验实现原理

各变量含义待估计方程:QYt[τ∣Zt−1]=a(τ)+Yt−1,p′α(τ)+Xt−1,q′β(τ)=Zt−1′θ(τ)Q_{Y_{t}}\left[\tau | Z_{t-1}\right]=a(\tau)+Y_{t-1, p}^{\prime} \alpha(\tau)+X_{t-1, q}^{\prime} \beta(\tau)=Z_{t-1}^{\prime} \theta(\t...
原创
发布博客 2020.04.11 ·
3444 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

考研数三无穷级数分析

欢迎大家关注微信公众号:海大经研人,经常会推送一些考研数三的内容。原推文链接:考研数三无穷级数分析很多考上一遇到无穷级数的题就头大,感觉好难,无从下手,但是考研里无穷级数考一道选择题,一道大题,分值还是很大的,那么应该如何应对呢?先说一下选择题,一般考无穷级数判敛散问题,那这样的题型应该怎么做,其实是可以总结出固定套路的。第一步,看属于什么级数,是正项级数,还是交错级数,亦或是任意项级数;...
原创
发布博客 2019.07.12 ·
4845 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

考研数学:秩为1的矩阵的特征值分析

考研数学:秩为1的矩阵的特征值分析在考研数学线性代数中,特征值的计算是一个基本考点,其计算方法很多,包括:根据特征值的定义进行计算、由特征方程计算、利用特征值的各种性质进行计算,这些方法都是求特征值的基本方法,同学们需要熟练掌握,但这些方法只是针对一般矩阵的普遍方法,而对于一些特殊矩阵,有时采用一些特殊的方法或技巧则可以更灵活、更有效地解决问题。下面对秩为1的特殊矩阵的特征值的计算方法做些分析,...
原创
发布博客 2019.07.11 ·
82690 阅读 ·
64 点赞 ·
5 评论 ·
179 收藏
加载更多