从传统Data Hub ( 中央强管控模式)到Data Fabric与Data Mesh这两种新型数据架构发生了哪些变革?Data Hub通过中央强管
Data Fabric与Data Mesh是截然不同的。Data Fabric仍然是基于中心化,以智能化的Active Metadata为核心来支撑复杂的数据治理。而Data Mesh是将数据治理拆分到各业务领域,分而治之,分别产出业务领域的数据产品
Data Fabric
近几年,Forrester和Gartner均对Data Fabric密切关注。Data Fabric核心是Active Metadata, 即通过增强学习和知识图谱建立Active Metadata支撑数据集成与数据分析。
这里的“主动元数据”是相对传统的“被动元数据”有意差异化的,传统元数据被采集之后、通过简单地搜索和查询场景来支撑使用。但元数据自身是可以再次进行深度挖掘。例如,基于关联度线索做出有价值的推荐,提高数据可信度,进一步支撑数据开发和数据编排。所以,数据编排智能化与数据虚拟化也是Data Fabric的重要组成部分。
Data Fabric数据架构方法论由一系列工具组合来落地,由专业的人用专业的工具来解决特定场景的问题,包括:
1. 定位可信数据的数据资产目录
2. 基于知识图谱激活元数据
3. 基于机器学习形成Active Metadata以指导和简化数据集成
4. 动态数据集成(这里包括数据虚拟化技术)
5. 自动数据加工编排
落地工具
Datablau DDC数据资产目录管理平台,早在2020发布的V5.0就已经具备了基于知识图谱的数据资产管理模块,通过知识图谱进行增强学习,提升数据资产关联度和可信度。同时,基于

最低0.47元/天 解锁文章
170

被折叠的 条评论
为什么被折叠?



