堆排序

堆排序

http://www.cnblogs.com/dolphin0520/archive/2011/10/06/2199741.html

1.堆

  堆实际上是一棵完全二叉树,其任何一非叶节点满足性质:

  Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]或者Key[i]>=Key[2i+1]&&key>=key[2i+2]

  即任何一非叶节点的关键字不大于或者不小于其左右孩子节点的关键字。

  堆分为大顶堆和小顶堆,满足Key[i]>=Key[2i+1]&&key>=key[2i+2]称为大顶堆,满足 Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]称为小顶堆。由上述性质可知大顶堆的堆顶的关键字肯定是所有关键字中最大的,小顶堆的堆顶的关键字是所有关键字中最小的。

2.堆排序的思想

   利用大顶堆(小顶堆)堆顶记录的是最大关键字(最小关键字)这一特性,使得每次从无序中选择最大记录(最小记录)变得简单。

    其基本思想为(大顶堆):

    1)将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区;

    2)将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]<=R[n]; 

    3)由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

    操作过程如下:

     1)初始化堆:将R[1..n]构造为堆;

     2)将当前无序区的堆顶元素R[1]同该区间的最后一个记录交换,然后将新的无序区调整为新的堆。

    因此对于堆排序,最重要的两个操作就是构造初始堆和调整堆,其实构造初始堆事实上也是调整堆的过程,只不过构造初始堆是对所有的非叶节点都进行调整。

    下面举例说明:

     给定一个整形数组a[]={16,7,3,20,17,8},对其进行堆排序。

    首先根据该数组元素构建一个完全二叉树,得到

 
 然后需要构造初始堆,则从最后一个非叶节点开始调整,调整过程如下:

20和16交换后导致16不满足堆的性质,因此需重新调整

这样就得到了初始堆。

即每次调整都是从父节点、左孩子节点、右孩子节点三者中选择最大者跟父节点进行交换(交换之后可能造成被交换的孩子节点不满足堆的性质,因此每次交换之后要重新对被交换的孩子节点进行调整)。有了初始堆之后就可以进行排序了。

此时3位于堆顶不满堆的性质,则需调整继续调整

 这样整个区间便已经有序了。
    从上述过程可知,堆排序其实也是一种选择排序,是一种树形选择排序。只不过直接选择排序中,为了从R[1...n]中选择最大记录,需比较n-1次,然后从R[1...n-2]中选择最大记录需比较n-2次。事实上这n-2次比较中有很多已经在前面的n-1次比较中已经做过,而树形选择排序恰好利用树形的特点保存了部分前面的比较结果,因此可以减少比较次数。对于n个关键字序列,最坏情况下每个节点需比较log2(n)次,因此其最坏情况下时间复杂度为nlogn。堆排序为不稳定排序,不适合记录较少的排序。


以下内容来自维基百科:

堆节点的访问

通常堆是通过一维数组来实现的。在起始数组为 0 的情形中:

  • 父节点i的左子节点在位置 (2*i+1);
  • 父节点i的右子节点在位置 (2*i+2);
  • 子节点i的父节点在位置 floor((i-1)/2);

堆的操作

在堆的数据结构中,堆中的最大值总是位于根节点。堆中定义以下几种操作:

  • 最大堆调整(Max_Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点
  • 创建最大堆(Build_Max_Heap):将堆所有数据重新排序
  • 堆排序(HeapSort):卸载位在第一个数据的根节点,并做最大堆调整的递归运算

#include <iostream>
#include <time.h>
using namespace std;
/*
	#堆排序#%
          #数组实现#%
*/
//#筛选算法#%
//void sift(int a[], int i, int n)
//{
//	//#置i为要筛选的节点#%
//	//int i = ind;
// 
//	//#j中保存i节点的左孩子#%
//	int j = i * 2 + 1; //#+1的目的就是为了解决节点从0开始而他的左孩子一直为0的问题#%
// 
//	while(j < n)//#未筛选到叶子节点#%
//	{
//		//#如果要筛选的节点既有左孩子又有右孩子并且左孩子值小于右孩子#%
//		//#从二者中选出较大的并记录#%
//		if(j + 1 < n && a[j] < a[j + 1])
//			j++;
//		//到这一步,a[j]对应的是i结点中的最大的孩子
//
//		//#如果要筛选的节点中的值大于左右孩子的较大者则退出#%
//		if(a[i] > a[j]) 
//			break;
//		else
//		{
//			//#交换#%
//			int t = a[j];
//			a[j] = a[i];
//			a[i] = t;
//			//
//			//#重置要筛选的节点和要筛选的左孩子#%
//			i = j;
//			j = 2 * i + 1;
//		}
//	}
// 
//	return;
//}
// 
//void heap_sort(int a[], int n)
//{
//	//#初始化建堆, i从最后一个非叶子节点开始#%
//	for(int i = (n - 2) / 2; i >= 0; i--)
//		sift(a, i, n);
// 
//	for(int j = 0; j < n; j++)//堆顶即最大值与“堆尾”交换,然后对不包含“堆尾”的堆调整为大顶堆。
//	{
//                //#交换#%
//		int t = a[0];
//		a[0] = a[n - j - 1];
//		a[n - j - 1] = t;
// 
//		//#筛选编号为0 #%
//		sift(a, 0, n - j - 1);
// 
//	}
//}
// 

void swap(int &i,int &j)
{
	int t;
	t=i;
	i=j;
	j=t;
}
void sift(int a[],int i,int n)//a[]为待调整的堆,i为非叶子结点,n为堆长度。使首节点为i结点的完全二叉树为大顶堆
{
	int j=2*i+1;
	while(j<n)
	{
		if(j+1<n && a[j+1]>a[j])
			j++;//如果存在右子树并且右子树大于左子树,则j指向右子树
		if(a[i]>a[j])//是大顶堆,直接退出
			break;
		else
		{
			swap(a[i],a[j]);
			i=j;
			j=2*i+1;
		}
	}
}
void make_heap(int a[],int n)
{
	for(int i=(n-1-1)/2;i>=0;i--)//从底向上调整。共有(n)/2个结点
	{
		sift(a,i,n);
	}
}
void heap_sort(int a[],int n)//默认a是大顶堆了
{
	for(int i=0;i<n;i++)
	{
		swap(a[0],a[n-1-i]);//堆首和堆尾互换。n-1-i是因为每操作一次,堆的长度减小1
		sift(a,0,n-1-i);//从堆首开始,重新调整
	}
}
int main()
{
	
	const int n=100;
	int a[n]={0};
	srand((unsigned)time(0));
	for(int i = 0; i < n; i++)
	{
		a[i]=rand()%100;
	}


	make_heap(a,n);
	heap_sort(a, n);
 
	for(int i = 0; i < n; i++)
	{
		if(i%5==0)
			cout<<endl;
		cout << a[i] << "   ";
	}
	cout << endl;
    system("pause");
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值