数论模板(转载)

原文链接:https://blog.csdn.net/weixin_43238423/article/details/99685883

https://blog.csdn.net/weixin_43238423/article/details/99685883

这位同学总结得挺好的 

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000007;
const ll N=100010;
ll v[N],prime[N],phi[N],v1[N],miu[N],m;
struct mat {
    ll d[5010][5010];
    int row,col;
};
inline mat Matrix_add (mat a,mat b){
    mat c;
    for(int i=1;i<=a.row;i++)
    for(int j=1;j<=a.col;j++){
        c.d[i][j]=a.d[i][j]+b.d[i][j];
    }
    return c;
}
inline mat Matrix_mul (mat a,mat b){
    mat c;
    memset(c.d,0,sizeof(c.d));
    for(int i=1;i<=a.row;++i)
     for(int j=1;j<=b.col;++j)
      for(int l=1;l<=a.col;++l)
       c.d[i][j]=(c.d[i][j]+a.d[i][l]*b.d[l][j]);
    return c;
}
inline mat Matrix_power (mat a,ll b,ll n){
    mat unit ;
    for(int i=1;i<=n;i++)unit.d[i][i]=1;
    unit.row=unit.col=a.row;
    for(;b;b>>=1){
        if(b&1)unit=Matrix_mul(unit,a);
        a=Matrix_mul(a,a);
    }
    return unit;
}
inline void primes_euler (ll n){
    memset(v,0,sizeof(v));
    m=0;
    for(int i=2;i<=n;i++){
        if(v[i]==0){
            v[i]=i;
            prime[++m]=i;
            phi[i]=i-1;
        }
        for(int j=1;j<=m;j++){
            if(prime[j]>v[i]||prime[j]>n/i)break;
            v[i*prime[j]]=prime[j];
            phi[i*prime[j]]=phi[i]*(i%prime[j]?prime[j]-1:prime[j]);
        }
    }
}
inline ll power (ll a,ll b ,ll p){
    ll ans=1;
    for(;b;b>>=1){
        if(b&1)ans=(ll)ans*a%p;
        a=(ll)a*a%p;
    }
    return ans;
}
inline ll exgcd (ll a,ll b,ll &x,ll &y){
    if(b==0){
        x=1;y=0;
        return a;
    }
    ll d=exgcd(b,a%b,x,y);
    ll z=x;x=y;y=z-(a/b)*y;
    return d;
}
inline ll C (ll n,ll m,ll mod){
    if(n<m)
        return 0;
    if(n==m)
        return 1;
    m=min(m,n-m);
    ll ans=1,fz=1,fm=1;
    for(ll i=1; i<=m; i++)
    {
        fz=fz*(n+1-i)%mod;
        fm=fm*i%mod;
    }
    ans=(fz*power(fm,mod-2,mod))%mod;
    return ans;
}
inline ll Lucas (ll n,ll m,ll p){
    ll ans=1;
    while(n&&m&&ans)
    {
        (ans*=C(n%p,m%p,p));
        n/=p;
        m/=p;
    }
    return ans;
}
inline ll baby_step_giant_step (ll a,ll b,ll p){
    map<ll,ll>m;
    m.clear();
    b%=p;
    ll t=(ll)sqrt(p)+1;
    for(ll j=0;j<t;j++){
        ll val =(ll)b*power(a,j,p)%p;
        m[val]=j;
    }
    a=power(a,t,p);
    if(a==0)return b==0?1:-1;
    for(ll i=0;i<=t;i++){
        ll val=power(a,i,p);
        ll j=m.find(val)==m.end()?-1:m[val];
        if(j>=0&&i*t-j>=0)return i*t-j;
    }
    return -1;
}
inline ll gcd(ll a,ll b){
    return b?gcd(b,a%b):a;
}
inline void mobius (ll n){
    for(int i=1;i<=n;i++){
        miu[i]=1,v1[i]=0;
    }
    for(int i=2;i<=n;i++){
        if(v[i])continue;
        miu[i]=-1;
        for(int j=2*i;j<=n;j+=i){
            v[j]=1;
            if((j/i)%i==0)miu[j]=0;
            else miu[j]*=-1;
        }
    }
}
inline ll phii (ll n){
    if(n==1)return 0;
    int ans=n;
    for(int i=2;i<=n;i++){
        if(n%i==0){
            ans=ans/i*(i-1);
            while(n%i==0)n/=i;
        }
    }
    if(n>1)ans/n*(n-1);
    return ans;
}
int main(){
    return 0;
}

 

展开阅读全文

没有更多推荐了,返回首页