HDU 4005 The war

47 篇文章 0 订阅
43 篇文章 0 订阅

题意:

一个无向图  现要加一条边  使得所有桥的边权的最小值最大


思路:

首先做边双连通  然后缩点  因为双连通分量里不可能有桥  缩点后图变成了树

把这棵树建起来  再利用树形dp处理出答案  处理方法是  找到树中的最小边把它断开形成两棵树

现在就是要维护两棵树内各一条路径使得答案出现  易知路径的方向总是朝向子树中包含边权最小的方向

做出dp[i]表示以i为根的子树内的最小边权  之后路径就会出现  然后将不在路径上的dp取最小值即可


注意:

图和树的变量名尽量明显区别 (我就是因为变量名写错WA了几十次…

图如果不连通要直接输出-1  (这个明显就是题出的不好…  按道理讲应该输出所有边里最小值

整幅图就是一个双连通分量要特判  输出-1


代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 10010
#define M 100010
#define inf 1000000

struct edge
{
    int u,v,w,next,flag,bridge;
}ed[M*2];
struct tree
{
    int u,v,w,next;
}te[M*2];
int head[N],dfn[N],low[N],belong[N],hte[N],dp[N],to[N];
int n,m,tot,idx,cnt,tol,ans;

void init()
{
    for(int i=1;i<=n;i++)
    {
        head[i]=dfn[i]=hte[i]=-1;
        belong[i]=to[i]=0;
        dp[i]=inf;
    }
    tot=idx=cnt=tol=0;
    ans=inf;
}

void add(int u,int v,int w)
{
    ed[tot].u=u;
    ed[tot].v=v;
    ed[tot].w=w;
    ed[tot].next=head[u];
    head[u]=tot;
    ed[tot].flag=0;
    ed[tot].bridge=0;
    tot++;
}

void tarjan(int u)
{
    int i,v,num=0;
    dfn[u]=low[u]=++idx;
    for(i=head[u];~i;i=ed[i].next)
    {
        v=ed[i].v;
        if(ed[i].flag) continue;
        ed[i].flag=ed[i^1].flag=1;
        if(dfn[v]==-1)
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
            if(dfn[u]<low[v])
            {
                ed[i].bridge=1;
                ed[i^1].bridge=1;
            }
        }
        else low[u]=min(low[u],dfn[v]);
    }
}

bool solve()
{
    int i;
    tarjan(1);
    for(i=1;i<=n;i++)
    {
        if(dfn[i]==-1) return false;
    }
    return true;
}

void color(int u)
{
    int i;
    belong[u]=cnt;
    for(i=head[u];~i;i=ed[i].next)
    {
        if(ed[i].bridge) continue;
        if(!belong[ed[i].v]) color(ed[i].v);
    }
}

void addedge(int u,int v,int w)
{
    te[tol].u=u;
    te[tol].v=v;
    te[tol].w=w;
    te[tol].next=hte[u];
    hte[u]=tol++;
}

int maketree()
{
    int i,u,v,res=inf;
    for(i=1;i<=n;i++)
    {
        if(!belong[i])
        {
            cnt++;
            color(i);
        }
    }
    for(i=0;i<tot;i+=2)
    {
        if(ed[i].bridge)
        {
            u=belong[ed[i].u];
            v=belong[ed[i].v];
            addedge(u,v,ed[i].w);
            addedge(v,u,ed[i].w);
            res=min(res,ed[i].w);
        }
    }
    return res;
}

void makedp(int u,int fa)
{
    int i,v,tmp;
    for(i=hte[u];~i;i=te[i].next)
    {
        v=te[i].v;
        if(v==fa) continue;
        makedp(v,u);
        tmp=min(dp[v],te[i].w);
        if(dp[u]>tmp)
        {
            dp[u]=tmp;
            to[u]=v;
        }
    }
}

void findans(int u,int fa)
{
    int i,v,tmp;
    for(i=hte[u];~i;i=te[i].next)
    {
        v=te[i].v;
        if(v==fa||v==to[u]) continue;
        tmp=min(dp[v],te[i].w);
        ans=min(ans,tmp);
    }
    if(to[u]) findans(to[u],u);
}

int main()
{
    int i,u,v,w,minw;
    while(~scanf("%d%d",&n,&m))
    {
        init();
        for(i=1;i<=m;i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w);
            add(v,u,w);
        }
        if(!solve())
        {
            puts("-1");
            continue;
        }
        minw=maketree();
        if(minw==inf)
        {
            puts("-1");
            continue;
        }
        for(i=0;i<tol;i+=2)
        {
            if(te[i].w==minw)
            {
                makedp(te[i].u,te[i].v);
                makedp(te[i].v,te[i].u);
                findans(te[i].u,te[i].v);
                findans(te[i].v,te[i].u);
                break;
            }
        }
        if(ans!=inf) printf("%d\n",ans);
        else puts("-1");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值