CodeForces 490D Chocolate

28 篇文章 0 订阅
8 篇文章 0 订阅

题意:

2块矩形巧克力  如果边长可以整除2  则可以从一半出掰开  吃掉一半  如果可以整除3  则可以从1/3处掰开  吃掉1/3  问  最少吃几次  能使得2块面积相同  输出最后时刻的边长

思路:

面积最多只有10^18  因此形成的面积的种类数最多几万种  我们可以利用面积来暴搜出所有状态  然后找面积相同时的最少步数

PS:数论的方法更好

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<cstdlib>
#include<ctime>
#include<cmath>
using namespace std;
typedef long long LL;
#define N 1000010

int a[2], b[2];
map<LL, int> res[2];
map<LL, pair<int, int> > way[2];
map<LL, int>::iterator it1, it2;
struct node {
    int x, y;
} f1, f2;
queue<node> q;
int ans;
LL fzc;

int main() {
    LL u, v;
    int now;
    scanf("%d%d%d%d", &a[0], &b[0], &a[1], &b[1]);
    res[0][(LL) (a[0]) * b[0]] = 0;
    res[1][(LL) (a[1]) * b[1]] = 0;
    way[0][(LL) (a[0]) * b[0]] = make_pair(a[0], b[0]);
    way[1][(LL) (a[1]) * b[1]] = make_pair(a[1], b[1]);
    for (int i = 0; i <= 1; i++) {
        f1.x = a[i];
        f1.y = b[i];
        q.push(f1);
        while (!q.empty()) {
            f1 = q.front();
            u = (LL) (f1.x) * f1.y;
            q.pop();
            now = res[i][u];
            if (u % 2 == 0) {
                v = u / 2;
                if (!res[i].count(v)) {
                    res[i][v] = now + 1;
                    if (f1.x % 2 == 0) {
                        f2.x = f1.x / 2;
                        f2.y = f1.y;
                    } else {
                        f2.x = f1.x;
                        f2.y = f1.y / 2;
                    }
                    way[i][v] = make_pair(f2.x, f2.y);
                    q.push(f2);
                }
            }
            if (u % 3 == 0) {
                v = u / 3 * 2;
                if (!res[i].count(v)) {
                    res[i][v] = now + 1;
                    if (f1.x % 3 == 0) {
                        f2.x = f1.x / 3 * 2;
                        f2.y = f1.y;
                    } else {
                        f2.x = f1.x;
                        f2.y = f1.y / 3 * 2;
                    }
                    way[i][v] = make_pair(f2.x, f2.y);
                    q.push(f2);
                }
            }
        }
    }
    ans = -1;
    for (it1 = res[0].begin(), it2 = res[1].begin();
            it1 != res[0].end() && it2 != res[1].end();) {
        if ((*it1).first == (*it2).first) {
            if (ans == -1 || (*it1).second + (*it2).second < ans) {
                ans = (*it1).second + (*it2).second;
                fzc = (*it1).first;
            }
            it1++;
            it2++;
        } else if ((*it1).first > (*it2).first)
            it2++;
        else
            it1++;
    }
    printf("%d\n", ans);
    if (ans >= 0) {
        pair<int, int> tp1 = way[0][fzc], tp2 = way[1][fzc];
        printf("%d %d\n", tp1.first, tp1.second);
        printf("%d %d\n", tp2.first, tp2.second);
    }
    return 0;
}


CodeForces - 616D是一个关于找到一个序列中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序列和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序列最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序列,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值