题意:
一个严格递增序列 某些数字的某些位被盖住了 求 恢复后的序列
思路:
贪心 让每个数在大于前一个的基础上尽量的小
先讨论数字长度
len[i]<len[i-1] 一定是NO
len[i]>len[i-1] 除了第一位如果是?就填1以外 其他?全填0
len[i]==len[i-1] dfs搜索num[i]格式下大于num[i-1]的最小的数
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<cstdlib>
#include<ctime>
#include<cmath>
using namespace std;
typedef long long LL;
#define N 100010
int n, ans = 1;
char a[N][10];
int len[N];
bool dfs(int i, int j, int big) {
if (j == len[i]) {
if (big)
return true;
return false;
}
if (a[i][j] != '?') {
if (!big && a[i][j] < a[i - 1][j])
return false;
return dfs(i, j + 1, big | (a[i][j] > a[i - 1][j]));
} else {
if (big) {
a[i][j] = '0';
if (dfs(i, j + 1, 1))
return true;
a[i][j] = '?';
return false;
} else {
for (char k = a[i - 1][j]; k <= '9'; k++) {
a[i][j] = k;
if (dfs(i, j + 1, k > a[i - 1][j]))
return true;
}
a[i][j] = '?';
return false;
}
}
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%s", a[i]);
len[i] = strlen(a[i]);
}
for (int i = 1; i <= n; i++) {
if (len[i] < len[i - 1]) {
ans = 0;
break;
} else if (len[i] == len[i - 1]) {
if (!dfs(i, 0, 0)) {
ans = 0;
break;
}
} else {
if (a[i][0] == '?')
a[i][0] = '1';
for (int j = 1; j < len[i]; j++) {
if (a[i][j] == '?')
a[i][j] = '0';
}
}
}
if (ans) {
puts("YES");
for (int i = 1; i <= n; i++)
puts(a[i]);
} else
puts("NO");
return 0;
}