poj 2481(树状数组)

题意:每个牛有两个属性值[S,E],如果牛i和牛j属性值满足Si <= Sj 且 Ej <= Ei 且 Ei - Si > Ej - Sj,牛i比牛j强壮,输出每个牛比自己强壮的牛的数量。
题解:把每个[Si,Ei],当做一个坐标点,会发现求的其实是每个点左上角有多少个点,那么可以把所有坐标点先按y降序排序然后x按升序,然后按用树状数组求和计算。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005;
struct Point {
    int x, y, id;
}P[N];
int n, C[N], res[N];

bool cmp(Point a, Point b) {
    if (a.y != b.y)
        return a.y > b.y;
    return a.x < b.x;
}

int lowbit(int x) {
    return x & (-x);
}

int Sum(int x) {
    int ret = 0;
    while (x > 0) {
        ret += C[x];
        x -= lowbit(x);
    }
    return ret;
}

void Add(int x, int d) {
    while (x <= N) {
        C[x] += d;
        x += lowbit(x);
    }
}

int main() {
    while (scanf("%d", &n) == 1 && n) {
        memset(C, 0, sizeof(C));
        for (int i = 0; i < n; i++) {
            scanf("%d%d", &P[i].x, &P[i].y);
            P[i].x++;
            P[i].y++;
            P[i].id = i;
        }
        sort(P, P + n, cmp);
        for (int i = 0; i < n; i++) {
            if (i > 0 && P[i - 1].x == P[i].x && P[i - 1].y == P[i].y)
                res[P[i].id] = res[P[i - 1].id];
            else
                res[P[i].id] = Sum(P[i].x);
            Add(P[i].x, 1);
        }
        for (int i = 0; i < n - 1; i++)
            printf("%d ", res[i]);
        printf("%d\n", res[n - 1]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值