hdu 3016(线段树+dp)

本文介绍了一种利用动态规划和线段树优化解决复杂木板跳跃问题的方法,详细解释了如何从最高木板开始,通过动态规划计算最大能量值,并使用线段树高效维护每个木板的连接信息。

题意:有n个木板,给出每个木板的左右端点坐标高度,还有每个木板的能量值,一个人初始能力100,从最高的木板开始,每下落到一个木板,得到这个木板的能量值,然后通过这个木板的左右移动到下一个木板,问落到横坐标为0的时候,最大能量值是多少。
题解:因为每个木板的左右端点可以确定下一个木板,明显可以用dp来从最高到最低的得出最大值,可是这里木板有100000个,可以借助线段树来维护每个木板通过左右端点到的下一个木板的编号,这样dp[next] = max(dp[next],dp[cur]+val[next])。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005;
struct Plank {
    int h, lx, rx, val;
    bool operator < (const Plank& a) const { return h < a.h; }
}pla[N];
int n, idx[N << 2], flag[N << 2], tl[N], tr[N], f[N];

void pushdown(int k) {
    if (flag[k] != -1) {
        flag[k * 2] = flag[k * 2 + 1] = flag[k];
        idx[k * 2] = idx[k * 2 + 1] = idx[k];
        flag[k] = -1;
    }
}

void modify(int k, int left, int right, int l, int r, int v) {
    if (l <= left && right <= r) {
        idx[k] = v;
        flag[k] = 1;
        return;
    }
    pushdown(k);
    int mid = (left + right) / 2;
    if (r <= mid)
        modify(k * 2, left, mid, l, r, v);
    else if (l > mid)
        modify(k * 2 + 1, mid + 1, right, l, r, v);
    else {
        modify(k * 2, left, mid, l, mid, v);
        modify(k * 2 + 1, mid + 1, right, mid + 1, r, v);
    }
}

int query(int k, int left, int right, int pos) {
    if (left == right)
        return idx[k];
    pushdown(k);
    int mid = (left + right) / 2;
    if (pos <= mid)
        return query(k * 2, left, mid, pos);
    return query(k * 2 + 1, mid + 1, right, pos);
}

int main() {
    while (scanf("%d", &n) == 1) {
        memset(idx, -1, sizeof(idx));
        memset(flag, -1, sizeof(flag));
        memset(f, 0, sizeof(f));
        pla[0].h = 0, pla[0].lx = 1, pla[0].rx = N - 5, pla[0].val = 0;
        for (int i = 1; i <= n; i++)
            scanf("%d%d%d%d", &pla[i].h, &pla[i].lx, &pla[i].rx, &pla[i].val);
        sort(pla, pla + 1 + n);
        for (int i = 0; i <= n; i++) {
            tl[i] = query(1, 1, N - 5, pla[i].lx);  
            tr[i] = query(1, 1, N - 5, pla[i].rx);
            modify(1, 1, N - 5, pla[i].lx, pla[i].rx, i);
        }
        f[n] = 100 + pla[n].val;
        for (int i = n; i >= 0; i--) {
            f[tl[i]] = max(f[tl[i]], f[i] + pla[tl[i]].val);
            f[tr[i]] = max(f[tr[i]], f[i] + pla[tr[i]].val);
        }
        if (f[0] > 0) printf("%d\n", f[0]);
        else printf("-1\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值