Flink如何做维表关联

本文探讨了Flink在处理实时流数据时如何与维表进行关联,包括实时查询维表、预加载全量数据和LRU缓存三种策略。实时查询可能造成对外部系统的高访问压力,预加载全量数据则可能导致数据不一致,而LRU缓存能平衡性能与延迟。Flink的异步IO功能有助于减轻系统延迟和提高吞吐量。
摘要由CSDN通过智能技术生成

声明:本系列博客为原创,最先发表在拉勾教育,其中一部分为免费阅读部分。被读者各种搬运至各大网站。所有其他的来源均为抄袭。

《2021年最新版大数据面试题全面开启更新》

 

     在实际生产中,我们经常会有这样的需求,需要以原始数据流作为基础,然后关联大量的外部表来补充一些属性。例如:在订单数据中,希望能得到订单收货人所在省的名称,一般来说订单中会记录一个省的ID,那么需要根据ID去查询外部的维度表补充省名称属性。

     在Flink流式计算中,一些维度表属性一般存储在MySQL/HBase/Redis中,这些维度表数据存在定时更新,我们根据业务进行关联。根据业务对维表数据关联的时效性要求,有一下几种解决方案:

  • 实时查询维表
  • 预加载全量数据
  • LRU缓存
  • 其他

实时查询维表

     实时查询维表是指用户在Flink算子中直接访问外部数据库,比如用MySQL来进行关联。这种方式是同步方式,数据保证是最新的。但是,当流式计算数据过大,会对外部系统带来巨大的访问压力,一旦出现比如连接失败、线程池满等情况,由

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知无(import_bigdata)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值