简介
之前文章中提到JoinedStream与CoGroupedStream,例如下列代码:
dataStream.join(otherStream)
.where(0).equalTo(1)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply { ... }
由于joinedStream与coGroupedStream来自于一个特定的window,且在一个关联上的key中实现,因此,Flink中的双流join一定是在一个基于Inner Join的key的前提下的操作。
双流Join中的Inner、Left、Right Join操作,实际上是指在特定的window范围内的join。即Join的主体是window范围,如果窗口内都没有数据,则不发生join。
具体实现
这里我通过2个Socket接收数据,模拟双流,共3个参数,代码如下:

if (args.length != 3) {
System.err.println("USAGE:\nSocketTextStreamJoinType &
本文详细介绍了Flink中双流Join的原理与实现,包括Inner Join、Left Join和Right Join。通过模拟双流数据,展示了如何使用coGroup方法在特定窗口内进行Join操作,并提供了完整的代码示例和测试步骤。在实际应用中,coGroupStream可能涉及更复杂的逻辑,如状态管理和延迟问题。
订阅专栏 解锁全文
3876

被折叠的 条评论
为什么被折叠?



