Flink去重第一弹:MapState去重

本文介绍了如何使用Flink的MapState实现实时计算中的去重功能,以广告点击用户数为例,详细阐述了实现步骤,包括基于事件时间的窗口划分、数据分组、使用processFunction及状态管理,并探讨了数据清理和延迟数据处理策略。
摘要由CSDN通过智能技术生成

声明:本系列博客部分是根据SGG的视频整理而成,非常适合大家入门学习。部分文章是通过爬虫等技术手段采集的,目的是学习分享,如果有版权问题请留言,随时删除。

《2021年最新版大数据面试题全面开启更新》

去重计算应该是数据分析业务里面常见的指标计算,例如网站一天的访问用户数、广告的点击用户数等等,离线计算是一个全量、一次性计算的过程通常可以通过distinct的方式得到去重结果,而实时计算是一种增量、长期计算过程,我们在面对不同的场景,例如数据量的大小、计算结果精准度要求等可以使用不同的方案。此篇介绍如何通过编码方式实现精确去重,以一个实际场景为例:计算每个广告每小时的点击用户数,广告点击日志包含:广告位ID、用户设备ID(idfa/imei/cookie)、点击时间。

实现步骤分析:

1.为了当天的数据可重现,这里选择事件时间也就是广告点击时间作为每小时的窗口期划分
2.数据分组使用广告位ID+点击事件所属的小时
3.选择processFunction来实现,一个状态用来保存数据、另外一个状态用来保存对应的数据量
4.计算完成之后的数据清理,按照时间进度注册定时器清理

实现

广告数据

case class AdData(id:Int,devId:String,time:Long)

分组数据

case class AdKey(id:Int,time:Long)

主流程

val env=StreamExecutionEnvironment.getExecutionEnvironment
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

    val kafkaConfig=new Properties()
    kafkaConfig.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"localhost:9092")
    kafkaConfig.put(ConsumerConfig.GROUP_ID_CONFIG,"test1")
    val consumer=new FlinkKafkaConsumer[String]("topic1",new SimpleStringSchema,kafkaConfig)
    val ds=env.addSource(consumer)
      .map(x=>{
        val s=x.split(",")
        AdData(s(0).toInt,s(1),s(2).toLong)
      }).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[AdData](Time.minutes(1)) {
      override def extractTimestamp(element: AdData): Long = element.time
    })
      .keyBy(x=>{
        val endTime= TimeWindow.getWindowStartWithOffset(x.time, 0,
          Time.hours(1).toMilliseconds) + Time.hours(1).toMilliseconds
        AdKey(x.id,endTime)
      })

指定时间时间属性,这里设置允许1min的延时,可根据实际情况调整;

时间的转换选择TimeWindow.getWindowStartWithOffset Flink在处理window中自带的方法,使用起来很方便,第一个参数 表示数据时间,第二个参数offset偏移量,默认为0,正常窗口划分都是整点方式,例如从0开始划分,这个offset就是相对于0的偏移量,第三个参数表示窗口大小,得到的结果是数据时间所属窗口的开始时间,这里加上了窗口大小,使用结束时间与广告位ID作为分组的Key。

去重逻辑

自定义Distinct1ProcessFunction 继承了KeyedProcessFunction, 方便起见使用输出类型使用Void,这里直接使用打印控制台方式查看结果,在实际中可输出到下游做一个批量的处理然后在输出;

定义两个状态:MapState,key表示devId, value表示一个随意的值只是为了标识,该状态表示一个广告位在某个小时的设备数据,如果我们使用rocksdb作为statebackend, 那么会将mapstate中key作为rocksdb中key的一部分,mapstate中value作为rocksdb中的value, rocksdb中value 大小是有上限的,这种方式可以减少rocksdb value的大小;另外一个ValueState,存储当前MapState的数据量,是由于mapstate只能通过迭代方式获得数据量大小,每次获取都需要进行迭代,这种方式可以避免每次迭代。

class Distinct1ProcessFunction extends KeyedProcessFunction[AdKey, AdData, Void] {
  var devIdState: MapState[String, Int] = _
  var devIdStateDesc: MapStateDescriptor[String, Int] = _

  var countState: ValueState[Long] = _
  var countStateDesc: ValueStateDescriptor[Long] = _

  override def open(parameters: Configuration): Unit = {

    devIdStateDesc = new MapStateDescriptor[String, Int]("devIdState", TypeInformation.of(classOf[String]), TypeInformation.of(classOf[Int]))
    devIdState = getRuntimeContext.getMapState(devIdStateDesc)

    countStateDesc = new ValueStateDescriptor[Long]("countState", TypeInformation.of(classOf[Long]))
    countState = getRuntimeContext.getState(countStateDesc)
  }

  override def processElement(value: AdData, ctx: KeyedProcessFunction[AdKey, AdData, Void]#Context, out: Collector[Void]): Unit = {

    val currW=ctx.timerService().currentWatermark()
    if(ctx.getCurrentKey.time+1<=currW) {
        println("late data:" + value)
        return
      }

    val devId = value.devId
    devIdState.get(devId) match {
      case 1 => {
        //表示已经存在
      }
      case _ => {
        //表示不存在
        devIdState.put(devId, 1)
        val c = countState.value()
        countState.update(c + 1)
        //还需要注册一个定时器
        ctx.timerService().registerEventTimeTimer(ctx.getCurrentKey.time + 1)
      }
    }
    println(countState.value())
  }

  override def onTimer(timestamp: Long, ctx: KeyedProcessFunction[AdKey, AdData, Void]#OnTimerContext, out: Collector[Void]): Unit = {
    println(timestamp + " exec clean~~~")
    println(countState.value())
    devIdState.clear()
    countState.clear()
  }
}

数据清理通过注册定时器方式ctx.timerService().registerEventTimeTimer(ctx.getCurrentKey.time + 1)表示当watermark大于该小时结束时间+1就会执行清理动作,调用onTimer方法。

在处理逻辑里面加了

val currW=ctx.timerService().currentWatermark()
if(ctx.getCurrentKey.time+1<=currW){
        println("late data:" + value)
        return
  }

主要考虑可能会存在滞后的数据比较严重,会影响之前的计算结果,做了一个类似window机制里面的一个延时判断,将延时的数据过滤掉,也可以使用OutputTag 单独处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值