Flink 维表Join/双流Join 方法总结

本文详细介绍了Flink中维表Join和双流Join的各种方法,包括预加载维表、分布式缓存、热存储关联、广播维表以及Temporal table function join,分析了各自的优缺点和适用场景。对于双流Join,讨论了Regular Join、Interval Join和Window join,强调了时间窗口在处理无限数据流中的重要性。
摘要由CSDN通过智能技术生成

一、背景

事实表通常存储在kafka中,维表通常存储在外部设备中(比如MySQL,HBase)。对于每条流式数据,可以关联一个外部维表数据源,为实时计算提供数据关联查询。维表可能是会不断变化的,在维表JOIN时,需指明这条记录关联维表快照的时刻。需要注意是,目前Flink SQL的维表JOIN仅支持对当前时刻维表快照的关联(处理时间语义),而不支持事实表rowtime所对应的的维表快照。

二、维表Join

预加载维表

将维表全量预加载到内存里去做关联,具体的实现方式就是我们定义一个类,去实现 RichFlatMapFunction,然后在 open 函数中读取维度数据库,再将数据全量的加载到内存,然后在 probe 流上使用算子 ,运行时与内存维度数据做关联。

这个方案的优点就是实现起来比较简单,缺点也比较明显,因为我们要把每个维度数据都加载到内存里面,所以它只支持少量的维度数据。同时如果我们要去更新维表的话,还需要重启作业,所以它在维度数据的更新方面代价是有点高的,而且会造成一段时间的延迟。对于预加载维表来说,它适用的场景就是小维表,变更频率诉求不是很高,且对于变更的及时性的要求也比较低的这种场景。

改进࿱

Flink双流join是指在Flink流处理框架中,将两个流数据进行关联操作的一种方式。在Flink中,支持两种方式的流的Join: Window Join和Interval Join。 Window Join是基于时间窗口的关联操作,包括滚动窗口Join、滑动窗口Join和会话窗口Join。滚动窗口Join是指将两个流中的元素根据固定大小的时间窗口进行关联操作。滑动窗口Join是指将两个流中的元素根据固定大小的时间窗口以固定的滑动间隔进行关联操作。会话窗口Join是指将两个流中的元素根据一段时间内的活动情况进行关联操作。 Interval Join是基于时间区间的关联操作,它允许流中的元素根据时间区间进行关联操作,而不依赖于固定大小的时间窗口。这样可以处理两条流步调不一致的情况,避免等不到join流窗口就自动关闭的问题。 总结起来,Flink双流join提供了通过时间窗口和时间区间的方式将两个流进行关联操作的灵活性和可靠性。根据具体的需求和数据特点,可以选择合适的窗口类型来进行双流join操作。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [Flink双流join](https://blog.csdn.net/weixin_42796403/article/details/114713553)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [Flink双流JOIN](https://blog.csdn.net/qq_44696532/article/details/124456980)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知无(import_bigdata)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值