JD 1027:欧拉回路

OJ题目:click here~~

题目分析:

若图G中存在这样一条路径,使得它恰通过G中每条边一次,则称该路径为欧拉路径。若该路径是一个圈,则称为欧拉(Euler)回路
具有欧拉路径的图称为欧拉图(简称E图)。
无向图存在欧拉回路的充要条件:
一个无向图存在欧拉回路,当且仅当该图拥有奇数度数的顶点的个数为0且该图是连通图。
有向图存在欧拉回路的充要条件:
一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。
并查集判断图是否连通 + 判断顶点的度是否为偶数
const int maxn = 1008 ;
int deg[maxn] ;
int fa[maxn] ;
void init(){
    for(int i = 0;i < maxn;i++)
        fa[i] = i ;
}

int GetFath(int x){
    if(x == fa[x]) return x ;
    return fa[x] = GetFath(fa[x]) ;
}

void Merg(int u , int v){
    int fu = GetFath(u) ;
    int fv = GetFath(v) ;
    if(fu != fv){
        fa[fu] = fv ;
    }
}

int main(){
    int n , m ;
    while(cin >> n){
        if(n == 0) break ;
        cin >> m ;
        init() ;
        int a , b , i , j , k ;
        memset(deg , 0 , sizeof(deg)) ;
        for(i = 0;i < m;i++){
            scanf("%d%d",&a,&b) ;
            deg[a]++ ;
            deg[b]++ ;
            Merg(a , b) ;
        }
        set<int> s ;
        for(i = 1;i <= n;i++)
            s.insert(GetFath(i)) ;
        if(s.size() != 1){
            puts("0") ;
            continue ;
        }
        else{
            for(i = 1;i <= n;i++)
                if(deg[i]&1) break ;
            if(i <= n) puts("0") ;
            else puts("1") ;
        }
    }
    return 0 ;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值