OJ题目:click here~~
题目分析:
若图G中存在这样一条路径,使得它恰通过G中每条边一次,则称该路径为欧拉路径。若该路径是一个圈,则称为欧拉(Euler)回路。
具有欧拉路径的图称为欧拉图(简称E图)。
无向图存在欧拉回路的充要条件:
一个无向图存在欧拉回路,当且仅当该图拥有奇数度数的顶点的个数为0且该图是连通图。
有向图存在欧拉回路的充要条件:
一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。
并查集判断图是否连通 + 判断顶点的度是否为偶数
const int maxn = 1008 ;
int deg[maxn] ;
int fa[maxn] ;
void init(){
for(int i = 0;i < maxn;i++)
fa[i] = i ;
}
int GetFath(int x){
if(x == fa[x]) return x ;
return fa[x] = GetFath(fa[x]) ;
}
void Merg(int u , int v){
int fu = GetFath(u) ;
int fv = GetFath(v) ;
if(fu != fv){
fa[fu] = fv ;
}
}
int main(){
int n , m ;
while(cin >> n){
if(n == 0) break ;
cin >> m ;
init() ;
int a , b , i , j , k ;
memset(deg , 0 , sizeof(deg)) ;
for(i = 0;i < m;i++){
scanf("%d%d",&a,&b) ;
deg[a]++ ;
deg[b]++ ;
Merg(a , b) ;
}
set<int> s ;
for(i = 1;i <= n;i++)
s.insert(GetFath(i)) ;
if(s.size() != 1){
puts("0") ;
continue ;
}
else{
for(i = 1;i <= n;i++)
if(deg[i]&1) break ;
if(i <= n) puts("0") ;
else puts("1") ;
}
}
return 0 ;
}