【DL--08】深度学习 用于处理图像的CNN

什么是CNN
Covolutional Neural Network,卷积神经网络
卷积是指将一些数线性加权,卷起来

一维卷积:
● 三个数a1、a2、a3
● 权值w1、w2、w3
● 卷起来,w1*a1+w2*a2+w3*a3
● 卷积窗口大小为3

二维卷积:
● 九个数a11、a12、a13、a21、a22、a23、a31、a32、a33
● 权值w11、w12、w13、w21、w22、w23、w31、w32、w33
● 卷起来,w11*a11+w12*a12+w13*a13+w21*a21+w22*a22+w23*a23+w31*a31+w32*a32+w33*a33
● 卷积窗口大小为3*3

所以,卷积的本质,是进行滑动的融合(一维沿着一个方向滑动,二维沿着两个方向滑动)

CNN的核心
● 局部连接:仅卷积的部分连接起来,而不像全连接层那样,下一层的每个神经元都和上一层的每个神经元相连
● 权值共享:每一个卷积层(filter)所用的权值是相同的

看懂以下的例子,你就懂CNN了:
卷积用以融合和抽象,子采样用以提取
这里写图片描述

CNN通用套路

  1. 原始数据:二维
  2. 卷积、子采样、卷积、子采样……
  3. 接上全连接层
  4. 接上分类层,输出
    这里写图片描述

Keras中的实现
一维卷积:Convolution1D
二维卷积:Convolution2D
池化层:MaxPooling1D、MaxPooling2D、AveragePooling1D、AveragePooling2D

发布了650 篇原创文章 · 获赞 778 · 访问量 184万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览