
深度学习--keras
东华果汁哥
大家好!我叫赖德发,欢迎您来到我的博客。
展开
-
【深度学习 项目实战】一个简单的LSTM实现时间序列预测
我们将通过一个简单实例来讲解LSTM建模过程以及模型的使用方法。实例描述如下,我们有一个整数序列[10, 20, 30, 40, 50, 60, 70],整数序列中共有7个数字,我们的目的或者说我们要解决的问题是,利用已有的这个整数序列来建立模型,用模型预测整数序列的下一个数字应该是多少?也就是整数序列的第8个数字应该是多少?一眼就能看出来,下一个数字应该是80,但是我们需要的是让模型预测出来这个...原创 2019-12-19 12:22:12 · 4407 阅读 · 3 评论 -
【深度学习 玩转keras】文本数据预处理
在深度学习运用在自然处理语言前,文本预处理是必不可少的步骤,一些常用的工具如句子句子分割,one-hot 编码,分词器都已经集成在keras预处理工具中,用户无需自己重新造轮子。下面我们将分别讲解这些功能。1、分割句子获得单词序列。from keras.preprocessing.text import Tokenizer,one_hot,text_to_word_sequenceimpor...原创 2019-10-27 20:02:51 · 907 阅读 · 0 评论 -
【深度学习 玩转keras】小试牛刀使用深度神经网络进行cifar-10图片分类
下面用一个keras 官方示例,给大家介绍一下使用深度学习进行图片分类的几大步骤以及实现。我们的分类对象是CIFAR-10数据集,这个数据集包含了6万张大小为32*32的彩色图片,其中50000张作为训练集,10000张作为测试集,这些图片分成10类。下面我们使用 keras 构建深度学习神经网络模型,然后基于构建好的深度神经网络模型对这个数据集进行训练,最后检验模型预测的准确性。首先让我们理...原创 2019-10-27 11:51:50 · 359 阅读 · 0 评论 -
【python 走进NLP】如何用Keras对分类问题进行类及其概率的预测
对于分类问题,模型学习的是一个输入特征到输出特征之间的映射,这里的输出即为一个标签。比如“垃圾邮件”和“非垃圾邮件”.下边是Keras中为简单的二分类问题开发的神经网络模型的一个例子.# -*- encoding=utf-8 -*-from keras.models import Sequentialfrom keras.layers import Densefrom sklearn....原创 2019-01-21 16:04:28 · 4443 阅读 · 0 评论 -
【python 走进NLP】keras情感分析例子
情感分析是自然语言处理很重要的一个方向,目的是让计算机理解文本中包含的情感分析。在这里将通过IMDB收集的对电影评论的数据集,分析某部电影是一部好电影还是一部不好的电影。借此研究情感分析的问题。1、在这里直接使用keras的imdb.load_data() 函数导入数据。2、keras通过嵌入层(Embeding)将单词的正整数表示转换为词嵌入。嵌入层需要指定词汇大小预期的最大数量,以及输出的...原创 2019-03-13 12:02:17 · 1516 阅读 · 0 评论