排序算法

本文深入探讨归并排序和快速排序两种经典排序算法。归并排序采用分治策略,通过递归分解数组并合并有序子数组实现排序,稳定且时间复杂度为O(nlogn),但空间复杂度为O(n)。快速排序同样基于分治,通过原地分区减少空间消耗,时间复杂度同为O(nlogn),但非稳定排序。文章详细解析了两种算法的实现过程和特性。
摘要由CSDN通过智能技术生成

归并排序

归并排序使用的是分治思想,归并排序的核心思想还是蛮简单的:
如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。

递推公式:
merge_sort(p…r) = merge(merge_sort(p…q), merge_sort(q+1…r))
终止条件:p >= r 不用再继续分解

过程说明:
我们申请一个临时数组 tmp,大小与 A[p…r] 相同。我们用两个游标 i 和 j,分别指向 A[p…q] 和 A[q+1…r] 的第一个元素。比较这两个元素 A[i] 和 A[j],如果 A[i]<=A[j],我们就把 A[i] 放入到临时数组 tmp,并且 i 后移一位,否则将 A[j] 放入到数组 tmp,j 后移一位。
继续上述比较过程,直到其中一个子数组中的所有数据都放入临时数组中,再把另一个数组中的数据依次加入到临时数组的末尾,这个时候,临时数组中存储的就是两个子数组合并之后的结果了。最后再把临时数组 tmp 中的数据拷贝到原数组 A[p…r] 中。

归并排序是稳定算法
归并排序的时间复杂度是O(nlogn)
归并排序的空间复杂度是O(n)

快速排序

快排的思想也是分治,快排的思想是这样的:
如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)。我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。

递推公式:
quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1, r)
终止条件:
p>= r

如果我们希望快排是原地排序算法,那它的空间复杂度得是 O(1),那 partition() 分区函数就不能占用太多额外的内存空间,我们就需要在 A[p…r] 的原地完成分区操作。

 partition(A, p, r) {
              pivot := A[r]
              i := p
              for j := p to r-1 do {
                if A[j] < pivot {
                  swap A[i] with A[j]
                  i := i+1
                }
              }
 swap A[i] with A[r]
 return i

这里的处理有点类似选择排序。我们通过游标 i 把 A[p…r-1] 分成两部分。A[p…i-1] 的元素都是小于 pivot 的,我们暂且叫它“已处理区间”,A[i…r-1] 是“未处理区间”。我们每次都从未处理的区间 A[i…r-1] 中取一个元素 A[j],与 pivot 对比,如果小于 pivot,则将其加入到已处理区间的尾部,也就是 A[i] 的位置。

快速排序不是稳定算法
快速排序的时间复杂度是O(nlogn)
快速排序的空间复杂度是O(1)

可以发现,归并排序的处理过程是由下到上的,先处理子问题,然后再合并。
而快排正好相反,它的处理过程是由上到下的,先分区,然后再处理子问题。
归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。我们前面讲过,归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。
快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值