Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.
For example, given n = 2, return 1 (2 = 1 + 1);
given n = 10, return 36 (10 = 3 + 3 + 4).
class Solution {
public: int integerBreak(int n) {
int dp[n + 1];
dp[0] = 0;
dp[1] = 1;
dp[2] = 1;
dp[3] = 2;
dp[4] = 4;
for (int i = 5; i <= n; ++i) {
dp[i] = 3 * max(i - 3, dp[i - 3]);
}
return dp[n]; '
}
};
2 => 1, 1 => 1
3 => 2, 1 => 2
4 => 2, 2 => 4
5 => 3, 2 => 6
6 => 3, 3 => 9
7 => 3, 4 => 12
8 => 3, 5 => 18
9 => 3, 6 => 27
10 => 3, 7 => 36
By observation, when you get maximum, one of the num is always 3.
After 3, the result will be larger than or equal the number itself.
本文介绍了一个整数拆分算法,该算法将一个正整数拆分为至少两个正整数之和,并最大化这些整数的乘积。通过递归方式实现,给出实例说明并观察到当达到最大值时其中一个数总是3。
2440

被折叠的 条评论
为什么被折叠?



