主成分分析(Principal Component Analysis,PCA

主成分分析(Principal Component AnalysisPCA)是将多个变量通过线性变换以选出较少几个重要变量的多元统计分析方法。

原理:在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

 

以二维特征为例,两个特征之间可能存在线性关系的(例如这两个特征分别是运动的时速和秒速度),这样就造成了第二维信息是冗余的。PCA的目标是为了发现这种特征之间的线性关系,检测出这些线性关系,并且去除这线性关系。 还是以二维特征为例。特征之间可能不存在完全的线性关系,可能只是强的正相关。如果把x-y坐标分解成u1-u2坐标,而u1轴线上反应了特征的主要变化(intrinsic),而u2的特征变化较小,其实可以完全理解为一些噪声的扰动而不去考虑它。PCA的任务就是找到u1u2

 

Program_lpgpca:http://www.codeforge.cn/article/224647

主成分分析PCA:http://www.cnblogs.com/zhangchaoyang/articles/2222048.html

             http://tieba.baidu.com/p/2199392852#

PCA (主成分分析)详解 (写给初学者) 结合matlab:
http://www.360doc.com/content/14/0526/06/15831056_380900310.shtml


http://blog.csdn.net/passball/article/details/24037593

主成分分析:

http://ufldl.stanford.edu/wiki/index.php/主成分分析




http://blog.csdn.net/jinshengtao/article/details/18448355





发布了418 篇原创文章 · 获赞 737 · 访问量 124万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览