RT 降维技术

一,特征选择法     1,用筛选器检测冗余特征         a,相关性分析             A,使用scipy.stat  pearson([1,2,3],[1,2,3,1]) 计算相关系数,返回相关系数值和p值,P越低则相关性系数越可信             B,弊端:只...

2015-04-30 21:13:56

阅读数:338

评论数:0

CK,KNN算法

测量不同特征值之间的距离方法 优点:精度高,对异常值不敏感,无数据输入设定 缺点:计算复杂度高,空间复杂度高 适用范围:数值型和标称型

2015-04-30 21:11:54

阅读数:323

评论数:0

CB,朴素贝叶斯和贝叶斯信念网络

1,朴素贝叶斯需要特征之间相互独立的强条件,制约了模型的适用 2,贝叶斯网络中的一个节点,如果它的父母节点已知,则它条件独立于它的所有非后代节点 3,每个节点附带一个条件概率表(CPT),表示该节点和父母节点的联系概率

2015-04-30 21:11:18

阅读数:570

评论数:0

CD,决策树

算法的核心问题: 1,按照什么样的次序来选择变量(属性)?     ID3:信息增益         ID3弊端:信息增益的方法倾向于首先选择因字数较多的变量     C4.5: 信息增益率                                  以个数为4,6,4的元祖为...

2015-04-30 21:10:50

阅读数:267

评论数:0

贪婪算法

package 贪婪算法; import java.util.Scanner; public class Tanlan { static int [] parvalue = new int[]{10000,5000,1000,500,200,100,50,20,10}; static in...

2014-04-22 22:41:22

阅读数:444

评论数:0

QuickSort

package quickSort; import java.util.Arrays; import java.util.Random; public class QuickSort { public static void main(String[] args) { int arrLe...

2014-04-22 22:36:59

阅读数:471

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭