题目链接:http://poj.org/problem?id=1149
题意:M个猪圈,N个顾客,每个顾客有一些的猪圈的钥匙,只能购买能打开的猪圈里的猪,而且要买一定数量的猪,每个猪圈有已知数量的猪,
但是猪圈可以重新打开,将猪的个数,重新分配,但是只能将猪往当前打开状态的猪圈里赶,以达到卖出的猪的数量最多。
思路:还是4部分,源点->猪圈->猪圈->汇点
Accepted | 976K | 63MS | C++ |
能用EK水的,当然用EK水
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <math.h>
#include <queue>
#define init(a) memset(a,0,sizeof(a))
#define PI acos(-1,0)
using namespace std;
const int maxn = 500;
const int maxm = 40000;
#define lson left, m, id<<1
#define rson m+1, right, id<<1|1
#define min(a,b) (a>b)?b:a
#define max(a,b) (a>b)?a:b
#define MAX INT_MAX
int c[1000][1000];
int re[1000];
int f[1000][1000];
int p[1000],n,m;
void EK(int s,int t)
{
queue<int >q;
while(q.empty()==false) q.pop();
int sum = 0;
while(1)
{
memset(re,0,sizeof(re));
q.push(s);
re[s] = MAX;
p[s] = -1;
while(!q.empty())
{
int u = q.front();
q.pop();
for(int i = 1;i<=n+1;i++)
{
if(!re[i] && f[u][i] < c[u][i])
{
q.push(i);
p[i] = u;
re[i] = min(re[u],c[u][i]-f[u][i]);
}
}
}
if(re[t]==0) break;
for(int st = t;st!=s;st = p[st])
{
f[p[st]][st] += re[t];
f[st][p[st]] -= re[t];
}
sum += re[t];
}
printf("%d\n",sum);
}
void initt()
{
for(int i = 0;i<=n+1;i++)
{
for(int j = 0;j<=n+1;j++)
{
c[i][j] = f[i][j] = 0;
}
p[i] = 0;
}
}
int main()
{
int pig[1001];
int a,b,w;
while(~scanf("%d%d",&m,&n))
{
initt();
for(int j = 1;j<=m;j++)
scanf("%d",&pig[j]);
for(int i = 1;i<=n;i++)
{
scanf("%d",&a);
while(a--)
{
scanf("%d",&b);
if(!p[b])//判断当前猪圈是否打开过
{
c[p[b]][i] += pig[b];
p[b] = i;
}
else
{
c[p[b]][i] = MAX;//打开过说明,可以从其他猪圈流向本猪圈,流量可能为无限大
p[b] = i;
}
}
scanf("%d",&w);
c[i][n+1] += w;
}
EK(0,n+1);
}
return 0;
}