POJ 1149 PIGS(最大流+建图)


题目链接:http://poj.org/problem?id=1149


题意:M个猪圈,N个顾客,每个顾客有一些的猪圈的钥匙,只能购买能打开的猪圈里的猪,而且要买一定数量的猪,每个猪圈有已知数量的猪,
但是猪圈可以重新打开,将猪的个数,重新分配,但是只能将猪往当前打开状态的猪圈里赶,以达到卖出的猪的数量最多。


思路:还是4部分,源点->猪圈->猪圈->汇点



Accepted976K63MSC++

能用EK水的,当然用EK水


#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <math.h>
#include <queue>
#define init(a) memset(a,0,sizeof(a))
#define PI acos(-1,0)
using namespace std;
const int maxn = 500;
const int maxm = 40000;
#define lson left, m, id<<1
#define rson m+1, right, id<<1|1
#define min(a,b) (a>b)?b:a
#define max(a,b) (a>b)?a:b
#define MAX INT_MAX

int c[1000][1000];
int re[1000];
int f[1000][1000];
int p[1000],n,m;

void EK(int s,int t)
{
    queue<int >q;
    while(q.empty()==false) q.pop();
    int sum = 0;
    while(1)
    {
        memset(re,0,sizeof(re));
        q.push(s);
        re[s] = MAX;
        p[s] = -1;
        while(!q.empty())
        {
            int u = q.front();
            q.pop();
            for(int i = 1;i<=n+1;i++)
            {
                if(!re[i] && f[u][i] < c[u][i])
                {
                    q.push(i);
                    p[i] = u;
                    re[i] = min(re[u],c[u][i]-f[u][i]);
                }
            }
        }
        if(re[t]==0) break;
        for(int st = t;st!=s;st = p[st])
        {
            f[p[st]][st] += re[t];
            f[st][p[st]] -= re[t];
        }
        sum += re[t];
    }
    printf("%d\n",sum);
}
void initt()
{
    for(int i = 0;i<=n+1;i++)
    {
        for(int j = 0;j<=n+1;j++)
        {
            c[i][j] = f[i][j] = 0;
        }
        p[i] = 0;
    }
}
int main()
{
    int pig[1001];
    int a,b,w;
    while(~scanf("%d%d",&m,&n))
    {
        initt();
        for(int j = 1;j<=m;j++)
            scanf("%d",&pig[j]);
        for(int i = 1;i<=n;i++)
        {
            scanf("%d",&a);
            while(a--)
            {
                scanf("%d",&b);
                if(!p[b])//判断当前猪圈是否打开过
                {
                    c[p[b]][i] += pig[b];
                    p[b] = i;
                }
                else
                {
                    c[p[b]][i] = MAX;//打开过说明,可以从其他猪圈流向本猪圈,流量可能为无限大
                    p[b] = i;
                }
            }
            scanf("%d",&w);
            c[i][n+1] += w;
        }
        EK(0,n+1);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值