ZOJ 2760 How Many Shortest Path(Dijistra + ISAP 最大流)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760


题意:给定一个带权有向图 G=(V, E)和源点 s、汇点 t,问 s-t 边不相交最短路最多有几
条。(1 <= N <= 100)


思路:分别从源点和汇点作一次 Dijkstra,但是流量网络只加入
满足dis[i] + ma[i][j] + (dis[t]-dis[i])==dis[t]的边(u, v)(这样便保证网络中的任意一条 s-t 路都
是最短路),容量为 1。求最大流。





忘记加不存在最短路的情况了,没写 inf 了,今天看到了,加了三行, 要不昨晚就A了。。。。


#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
const int N = 210;
const int maxn = 2000;
const int maxm = 100000;
#define MIN INT_MIN
#define MAX 1e6
#define LL long long
#define FOR(i,a,b) for(int i = a;i<b;i++)
#define max(a,b) (a>b)?(a):(b)
#define min(a,b) (a>b)?(b):(a)
using namespace std;

int head[maxn], bnum;
int dis[maxn];
int num[maxn];
int cur[maxn];
int pre[maxn];
int ma[310][310],di[310],vis[310];
struct node
{
    int v, cap;
    int next;
} edge[maxm];
void add(int u, int v, int cap)
{
    edge[bnum].v=v;
    edge[bnum].cap=cap;
    edge[bnum].next=head[u];
    head[u]=bnum++;

    edge[bnum].v=u;
    edge[bnum].cap=0;
    edge[bnum].next=head[v];
    head[v]=bnum++;
}
void BFS(int source,int sink)
{
    // puts("worinimeiaaaa");
    queue<int>q;
    while(q.empty()==false)
        q.pop();
    memset(num,0,sizeof(num));
    memset(dis,-1,sizeof(dis));
    q.push(sink);
    dis[sink]=0;
    num[0]=1;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u]; i!=-1; i=edge[i].next)
        {
            int v = edge[i].v;
            if(dis[v] == -1)
            {
                dis[v] = dis[u] + 1;
                num[dis[v]]++;
                q.push(v);
            }
        }
    }
}
int ISAP(int source,int sink,int n)
{
    // puts("wonimeia");
    memcpy(cur,head,sizeof(cur));

    int flow=0, u = pre[source] = source;
    BFS( source,sink);
    while( dis[source] < n )
    {
        if(u == sink)
        {
            int df = MAX, pos;
            for(int i = source; i != sink; i = edge[cur[i]].v)
            {
                if(df > edge[cur[i]].cap)
                {
                    df = edge[cur[i]].cap;
                    pos = i;
                }
            }
            for(int i = source; i != sink; i = edge[cur[i]].v)
            {
                edge[cur[i]].cap -= df;
                edge[cur[i]^1].cap += df;
            }
            flow += df;
            u = pos;
        }
        int st;
        for(st = cur[u]; st != -1; st = edge[st].next)
        {
            if(dis[edge[st].v] + 1 == dis[u] && edge[st].cap)
            {
                break;
            }
        }
        if(st != -1)
        {
            cur[u] = st;
            pre[edge[st].v] = u;
            u = edge[st].v;
        }
        else
        {
            if( (--num[dis[u]])==0 ) break;
            int mind = n;
            for(int id = head[u]; id != -1; id = edge[id].next)
            {
                if(mind > dis[edge[id].v] && edge[id].cap != 0)
                {
                    cur[u] = id;
                    mind = dis[edge[id].v];
                }
            }
            dis[u] = mind+1;
            num[dis[u]]++;
            if(u!=source)
                u = pre[u];
        }
    }
    return flow;
}
void initt()
{
    memset(head,-1,sizeof(head));
    bnum=0;
}
int n;
void Dijstra(int v0,int t)
{
    FOR(i,0,n)
    {
        vis[i] = 0;
        di[i] = ma[v0][i];
    }
    vis[v0] = 1;
    di[v0] = 0;
    FOR(i,1,n)
    {
        int u = v0,mi = MAX;
        FOR(j,0,n)
        {
            if(!vis[j] && di[j] < mi)
            {
                u = j;
                mi = di[j];
            }
        }
        vis[u] = 1;
        FOR(j,0,n)
        {
            if(!vis[j] && ma[u][j] < MAX && di[u] + ma[u][j] < di[j])
            {
                di[j] = ma[u][j] + di[u];
            }
        }
    }
}
int main()
{
    int s,t;
    while(~scanf("%d",&n))
    {
        initt();
        FOR(i,0,n)
        {
            FOR(j,0,n)
            {
                scanf("%d",&ma[i][j]);
                if(i==j)
                    ma[i][j] = 0;
                if(ma[i][j]<0)
                    ma[i][j] = MAX;
            }
        }
        scanf("%d%d",&s,&t);
        if(s==t)
        {
            puts("inf");// ----------->坑爹啊。。。
            continue;
        }
        Dijstra(s,t);
        int dd = di[t];
        //printf("di[t] = %d\n",dd);
        FOR(i,0,n)
        {
            FOR(j,0,n)
            {
                if(ma[i][j]< MAX && di[i] + ma[i][j] + (dd-di[j]) == dd )
                {
                    add(i,j,1);
                }
            }
        }
        int ans = ISAP(s,t,n+1);
        cout<<ans<<endl;

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值