AlmostFree
码龄11年
关注
提问 私信
  • 博客:344,993
    344,993
    总访问量
  • 464
    原创
  • 2,065,614
    排名
  • 69
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
  • 加入CSDN时间: 2014-01-18
博客简介:

渐近自由

博客描述:
只要有朝那个方向的分运动,你就离它越来越近
查看详细资料
个人成就
  • 获得39次点赞
  • 内容获得50次评论
  • 获得81次收藏
  • 代码片获得164次分享
创作历程
  • 9篇
    2017年
  • 35篇
    2016年
  • 287篇
    2015年
  • 135篇
    2014年
成就勋章
TA的专栏
  • 模拟
    36篇
  • 动态规划
    70篇
  • 贪心
    13篇
  • 暴力枚举
    9篇
  • 搜索
    34篇
  • 数论数学
    81篇
  • 字符串
    23篇
  • 二分三分
    12篇
  • 计算几何
    19篇
  • 图论
    69篇
  • 数据结构
    49篇
  • 练习赛
    19篇
  • cfGo
    7篇
  • linux
    5篇
  • Machine Learning
    31篇
  • opencv
    1篇
  • crazy minds
    1篇
  • Hash
    2篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

test

Tables Are Cool col 3 is right-aligned $1600 col 2 is centered $12 zebra stripes are neat $1
原创
发布博客 2017.09.19 ·
524 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

PQ-源码解析

PQLoad data and set parameterLearnEncodeSearchIVFPQLoad data and set parameterLearnEncodeSearchPQLoad data and set parameter第一步是载入数据和设定参数。 载入数据,random生成数据可以不需要数据集。 以下是载入数据的代码:% Generate or l
原创
发布博客 2017.05.28 ·
4723 阅读 ·
3 点赞 ·
3 评论 ·
6 收藏

Cuda学习笔记

CUDA C简介基本操作读取GPU的信息CUDA C并行编程向量和Julia集线程协作点积的计算申请共享内存每个线程单独工作多个线程协同工作保存归约结果总的代码CUDA C简介基本操作以下是调用GPU的基本操作代码。代码作用是将两个数相加。 其中要注意的是: 1. cudaMemcpy() 函数前两个参数传递的是地址。 2. cudaMalloc() 函数原型为:cud
原创
发布博客 2017.04.18 ·
2225 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

笔记:ITQ

IntroductionRelated WorksApproximate Nearest Neighbor SearchSimilarity Preserving Binary CodesITQ代码Introductionlarge-scale image retrieval的主要挑战: 1. define similarity between images(图片间相似度定义-cv的基础
原创
发布博客 2017.03.01 ·
1959 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

windos安装tensorflow

AnacondaCUDATensorflowAnaconda用清华的源下载,由于TensorFlow supports only 64-bit Python 3.5 on Windows.所以载的是Anaconda3-4.2.0-Windows-x86_64.exe版本。 链接:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/CUDA
原创
发布博客 2017.02.17 ·
971 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文笔记:MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

AbstractIntroductionRelated workNetwork architectureTraining and predictionSampling in trainingA two-stage prediction pipelineExperimentsSummaryAbstractMatchNet:一个用来从patches中提取特征的深度卷积网络 + 一个用来比
原创
发布博客 2017.02.08 ·
3460 阅读 ·
2 点赞 ·
1 评论 ·
8 收藏

CS231n Module 1

Image ClassificationIntroductionNearest Neighbor ClassifierK-Nearest Neighbor ClassifierSummaryApplying kNN in practiceLinear ClassificationImage ClassificationIntroduction这个部分介绍了图片识别问题。图片识别问题是将一张
原创
发布博客 2017.01.18 ·
368 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CS231n Module 0

Python Numpy TutorialPythonBasic data typesFunctionsClassesNumpyArraysPython / Numpy TutorialPython这里介绍了python,并举了一个快排的例子,这个快排写的挺好看的。def quicksort(arr): if len(arr) <= 1: return arr
原创
发布博客 2017.01.11 ·
587 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Opencv2.4和Opencv3.1安装总结

Opencv24Opencv31Opencv2.4之前安装的是Opencv2.4版本,也在这里做一个总结。1.下载Opencv源码:http://opencv.org/downloads.html 2.4版本的。这一步也可以用git clone。2.安装依赖:sudo apt-get install build-essential cmake libgtk2.0-dev pkg-config Py
原创
发布博客 2017.01.06 ·
3243 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

CS229 ProblemSet记录

PS0Gradients and HessiansPositive definite matricesEigenvectors eigenvalues and the spectral theoremPS1Logistic regressionPoisson regression and the exponential familyGaussian discriminant analy
原创
发布博客 2016.12.16 ·
4732 阅读 ·
2 点赞 ·
7 评论 ·
13 收藏

Tensorflow学习笔记

InstallBasic Usage构建图交互式方法变量MNIST TrainingMNIST DataSoftmaxCNNTensorFlow运作方式InferenceLossTensorBoardInstallUbuntu14.04:#安装pipsudo apt-get install python-pip python-dev #安装tensorflowsudo p
原创
发布博客 2016.11.30 ·
7894 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

Theano学习笔记

InstallInstall在ubuntu14.04上安装Theano,两句命令就够了:sudo apt-get install python3-numpy python3-scipy python3-dev python3-pip python3-nose g++ libopenblas-dev gitsudo pip install Theano 没有报错就是安装成功了。continue………
原创
发布博客 2016.11.25 ·
292 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Caffe学习笔记

Blobs Layers and Nets anatomy of a Caffe modelBlob storage and communicationImplementation DetailsLayer computation and connectionsNet definition and operationModel formatForward and BackwardLos
原创
发布博客 2016.11.18 ·
897 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Neural Networks and Deep Learning 资料整理

CH1 Using neural nets to recognize handwritten digits1. RNN的wiki:recurrent neural networks2. Cauchy-Schwarz不等式的wiki:Cauchy-Schwarz inequalityCH2 How the backpropagation algor
原创
发布博客 2016.11.12 ·
1143 阅读 ·
0 点赞 ·
4 评论 ·
0 收藏

Neural Networks and Deep Learning CH6

Introducing convolutional networksLocal receptive fieldsShared weights and biasesPooling layersPut it all togetherConvolutional neural networks in practiceThe code for our convolutional networks
原创
发布博客 2016.11.11 ·
800 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Neural Networks and Deep Learning CH5

The vanishing gradient problemWhats causing the vanishing gradient problem Unstable gradients in deep neural netsWhy the vanishing gradient problem occursThe exploding gradient problemThe unstable
原创
发布博客 2016.11.03 ·
624 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Neural Networks and Deep Learning CH4

Two caveatsUniversality with one input and one outputMany input variablesExtension beyond sigmoid neurons这一章比较简单,主要证明了为什么神经网络可以计算任意的连续函数。无论这个函数是什么,总存在一个神经网络,对任意的输入xx,可以从网络中得到近似的f(x)f(x)。当函数有多个输入多个输出
原创
发布博客 2016.10.25 ·
629 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Neural Networks and Deep Learning CH3

The cross-entropy cost functionIntroducing the cross-entropy cost functionUsing the cross-entropy to classify MNIST digitsWhat does the cross-entropy mean Where does it come fromSoftmaxOverfitting
原创
发布博客 2016.10.21 ·
884 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Neural Networks and Deep Learning CH2

Warm up a fast matrix-based approach to computing the output from a neural networkThe two assumptions we need about the cost functionThe Hadamard productBackpropagationThe four fundamental equation
原创
发布博客 2016.10.14 ·
836 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

leetcode刷题记录

1. Two Sum  (2016.10.11)题意:给一组数,寻找其中和为target的两个数,返回他们的index。解法:暴力可过,map可过(技巧是边维护边遍历,这样可以剔除相同数不同index的情况),set可过(也是边维护边遍历)。2. Add Two Numbers  (2016.10.12)题意:将两个用链表反向存储的数做加法,求结果。e.g   l1:
原创
发布博客 2016.10.13 ·
672 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多