Coursera机器学习 Week6 笔记

编程作业放到了github上:coursera_machine_learning

Advice for Applying Machine Learning

在目前数据集中拟合得非常好的算法不一定在新数据集中也能work,极有可能发生了overfitting,所以需要一个评估的方法来判断这个算法是否在新的数据集中可行。

1. Evaluating a Learning Algorithm

首先第一步要做的,就是将目前已有的数据集随机打乱,然后分成training set和test set,一般70%的training set,30%作为test set。随即打乱是为了保持training set和test set的类别分布均匀。

然后根据training set中的错误 J(θ) 来更新模型;

最后使用test set中的错误 J(θ) 来评价模型。错误越小越好。

test set error反映出一个模型的范化能力。

Linear Regression的步骤:

Logistic Regression以及one-to-rest的多分类的步骤:
如果有多个模型,需要从中挑选出一个最好的模型,如下图:
模型中的权值 θ 和偏置 b 都是由Jtrain(θ,b)来决定的,即 θ b are fit to training set。 如果现在使用Jtest(θ,b)来选择模型的话(就是选择d = degree of polynomial),则 d will be fit to test set。这样的话,如果继续使用Jtest(θ,b)评估模型的泛化能力有可能是得模型在 d 过拟合。 为解决这一问题,现在我们把原有数据集分成3分:training set 60%, validation set 20% & test set 20%。 首先,用Jtrain(θ,b)来决定权值 θ 和偏置 b ; 接着,用Jvalidation(θ,b)来选择模型,即选择d = degree of polynomial; 最后,用 Jtest(θ,b) 来评估模型的泛化能力。

2. Bias vs. Variance

high bias的意思是:拟合程度不够, Jtrain(θ) Jvalidation(θ) Jtest(θ) 都大 high variance的意思是:过拟合,范化能力不够, Jtrain(θ) 小了,但是 Jvalidation(θ) Jtest(θ) 都大 可以通过观察 Jtrain(θ) Jvalidation(θ) 或者 Jtest(θ) 来判断模型什么时候过拟合。 如下图:
Jvalidation(θ) Jtest(θ) )曲线转折处就是过拟合开始的时候。 过拟合的问题由 Jtraining(θ) 中的regularization项解决,其中的 λ 就是权衡high bias和high variance的关键,这个 λ 选大选小都不好,关系如下:
和上面选择模型(就是选择d = degree of polynomial)一样,我们用 Jvalidation(θ) 来选择 λ :
再来看看扩大dataset对模型性能提升的帮助。 首先是,扩大dataset对 Jtraining(θ) Jvalidation(θ) 的影响:
接着是,当模型确定,而且模型面临high bias的情况下,扩大dataset对 Jtraining(θ) Jvalidation(θ) 的影响:
发现,扩大dataset对于提升拟合能力的帮助并不大。 接着是,当模型确定,而且模型面临high variance的情况下,扩大dataset对 Jtraining(θ) Jvalidation(θ) 的影响:
发现,扩大dataset对于提升范化能力是有帮助的。 对于神经网络来说,越深神经元越多,越有可能overfitting,这就是为什么深度学习需要大量的数据了:
总结如下:

3. Precision & Recall

对于那种“倾斜的数据集(skewed dataset)”,所谓“倾斜”的意思是说,各类别的数据量相差很大。单纯地使用“准确率accuracy”是没法判断模型的好坏的,比如下面的例子:

健康的人有99个(y=0),得癌症的病人有1个(y=1)。我们用一个特别糟糕的模型,永远都输出y=0,就是让所有的病人都是健康的。

这个时候我们的“准确率”accuracy=99%,判断对了99个,判断错了1个,但是很明显地这个模型相当糟糕。

因此需要一种很好的评测方法,来把这些“作弊的”模型给揪出来。

先来了解一下真假阳阴性:

接着引入两个新的术语“查准率precision”和“召回率recall”:

解释一下,“查准率”就是说,所有被查出来得了癌症的人中,有多少个是真的癌症病人;“召回率”就是说,所有得了癌症的病人中,有多少个被查出来得癌症。

按照我们刚才的做法,recall = 01=0 ,所以这不是一个好模型。

拥有高查准率或者高召回率的模型是一个好模型。

注意:我们是对稀有类别使用的查准率或者召回率,而且我们会将这个“稀有类别”设置成y=1!!!

总结,在skewed dataset中,不能使用准确率accuracy来评判模型,而应该使用查准率或者召回率对模型在“稀有类别”上的performance进行评估。

4. F1 score

我们希望对于某个模型而言,在precision越高的情况下,recall也会越高,但是有些情况下这两者是矛盾的,现在来考虑下面情况。

第一种情况:当且仅当非常确信他得癌症了,才确诊他得了癌症,即:

hθ(x)={1if hθ(x)0.70if hθ(x)<0.7

这个时候,就是要“高的查准率”,结果导致了“低的召回率”。

第二种情况:只要怀疑他得了癌症,就确诊他得了癌症,即:

hθ(x)={1if hθ(x)0.30if hθ(x)<0.3

这个时候,就是要“高的召回率”,结果导致了“低的准确率”。

这种情况下precision和recall的关系图如下:

从这张图中看,precision很高的时候,recall就很低,反之。在某些应用中,我们就是需要这种precision和recall反相关的模型,但是有的情况下,我们也需要precision和recall同样好的模型,但是什么样的precision和recall才是同样好的呢?

我们需要一个标准可以综合这二者指标的评估指标,用于综合反映整体的指标,其中一种标准就是F1 score:

F1=PRP+R

看下面一个例子中,F1 score就反映了整体的指标,当precision和recall差不多好的时候,F1也是最好的:

比如,当precision或者recall中有一个特别差的时候,F1会特别低:
precision=0 or recall = 0, then F1=0

当precision和recall都特别好的时候,F1也会特别好:
precision=1 and recall=1, then F1=1

总结一下,不同的应用下会有不同的评判标准,有的时候希望Precision比较高,有的时候希望Recall比较高,还有的时候希望他俩的综合指标F1比较高,这就需要自己根据具体的应用来选定了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值