最近感慨面试难的人越来越多了,一方面是市场环境,更重要的一方面是企业要求越来越高了。对于大数据这行来说一直是缺人的,之前是做大数据的人本来就少,还得从 Java 那边扒拉合适的;现在做大数据的人是多了,但很多却只停留在框架的应用阶段,广度不足,深度不够,根本没有 trouble-shooting 的能力。
所以在这段时间想跳槽加薪,或者是想转战大数据这行的朋友,就一定要好好准备抓住机会,补一补自己的知识体系,完善自己的能力模型,冲刺30K+。
为了帮大家节约时间,给大家搞来了今年上半年碰到的大厂大数据面试题合集,内容非常的全面。包含各大厂的大数据面试真题 (笔记)+ 大佬的大数据书单(从入门到进阶到拓展)+ 大数据工程师精品学习视频 + 学习路线图与职业规划课 质量都非常高,需要的可自行领取!
详细资料展示
一线大厂面试真题:(上百家大厂面试题)
注:篇幅有限,资料已打包整理好,扫码自行领取!
注意!仅限今天
备注暗号:1
大数据面试真题+答案详解:Java基础、Flink、haddoop、kafka、JVM、Linux、Spak、SQL...
注:篇幅有限,资料已打包整理好,扫码自行领取!
注意!仅限今天
备注暗号:1
注:篇幅有限,资料已打包整理好,扫码自行领取!
注意!仅限今天
备注暗号:1
大数据治理平台建设方案(84页)这份材料我给满分 !
意义:是构建完善、共享、统一管理数据环境的基本保障和重要组成部分;是把数据作为资产来管理的有效手段。
作用:确定了一系列岗位角色和相应的责任及管理流程;保证了业务数据在采集、集中、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性。
价值:企业进行数据治理的最大驱动力来自数据质量,通过提高数据质量实现更多的业务价值;将实现业务目标作为数据管理和服务的核心驱动力,优化数据架构,提升数据仓库/信息化管理系统建设,支持管理能力的提高、精细化和决策的科学性。
企业级学习视频:spark、hadoop、hadoopRDD、源码分析、数据分析、数据仓、架构演变...
大数据书单:算法图解、ZooKeeper、Apache Kudu、深入理解Spark、大数据治理、Hadoop权威指南...
学习路线图:Java基础、Liunx、Hadoop、ELK Stack、Spark、FLink、kafka、大数据EB级架构设计...
技术分享与职业规划课:最主流的核心技术点,面试难题,企业级实战等硬核干货
建议大家一定要来听听马士兵教育-吴百豹老师分享的大数据直播课程,每晚 20:00 -22:00 在线讲解目前最主流的核心技术点,面试难题,企业级实战等硬核干货,帮助你更好的提升自己和跳槽涨薪。
注意!仅限今天
备注暗号:1
限本号粉丝,前50人有效
快来抢占免费名额吧
(添加助教老师,先到先得)