# 1007. Maximum Subsequence Sum (25)

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:
10
-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:

10 1 4

----------------华丽的分割线---------------------

#include<cstdio>
#include<cstdlib>

#define Maxn 10001

int input[Maxn];

bool hasPositive = false;
bool hasNegtive = false;
bool hasZero = false;

int main(void)
{
int K,i;
scanf("%d",&K);
for(i=0;i<K;++i)
{
scanf("%d",&input[i]);
}
int leftindex = 0;
int rightindex = K-1;
int countnum = 0;
int maxsum = 0;
int thissum = 0;
for(i=0;i<K;++i)
{
if(input[i] == 0)
hasZero = true;
thissum += input[i];
++countnum;
if(thissum > maxsum)
{
hasPositive = true;
maxsum = thissum;
rightindex = i;
leftindex = rightindex - countnum+1;
continue;
}
if(thissum < 0)
{
hasNegtive = true;
thissum = 0;
countnum = 0;
}
}
if(hasZero && hasNegtive && (!hasPositive))
{
printf("0 0 0");
}
else
{
printf("%d %d %d",maxsum,input[leftindex],input[rightindex]);
}
system("pause");
return 0;
}

#### 1007. Maximum Subsequence Sum (25) -- 动态规划

2015-08-13 21:11:58

#### 1007. Maximum Subsequence Sum (25)-PAT甲级真题（动态规划dp）

2016-08-07 20:13:17

#### 【PAT】1007. Maximum Subsequence Sum (25)

2013-08-23 16:11:58

#### PAT 1007 Maximum Subsequence Sum（最长子段和）

2016-05-26 19:37:48

#### 1007. Maximum Subsequence Sum （最大连续子序列）

2017-03-28 21:38:15

#### 算法笔记-1-最大子列和-Maximum Subsequence Sum

2016-09-18 22:58:39

#### PAT 1007 Maximum Subsequence Sum（最大子串和）

2017-05-10 19:03:21

#### MOOC ：01-复杂度2 Maximum Subsequence Sum

2015-10-07 21:55:40

#### 01-复杂度2.Maximum Subsequence Sum

2015-03-05 19:17:25

#### PAT 数据结构 01-复杂度2. Maximum Subsequence Sum (25)

2015-07-13 10:29:53