数据仓库与数据集成

数据仓库是一个集成的(Integrated),面向主题的(Subject-Oriented),随时间变化的(Time-Variant),不可修改的(Nonvolatile)数据集合,用于支持管理决策。这是数据仓库之父 Bill Inmon 在 1990 年提出的数据仓库概念。该概念里最重要的一点就是“集成的”,其余特性都是一些方法论的东西。因为数据仓库首先要解决的问题,就是数据集成,就是将多个分散的、异构的数据源整合在一起,消除数据孤岛,便于后续的分析。这个不仅适用于传统的离线数仓,也同样适用于实时数仓,或者是现在火热的数据湖。首先要解决的就是数据集成的问题。如果说业务的数据都在一个数据库中,并且这个数据库还能提供非常高效的查询分析能力,那其实也用不着数据仓库和数据湖上场了。

数据集成就是我们常称作 ETL 的过程,分别是数据接入、数据清洗转换打宽、以及数据的入

本文详细介绍了如何利用Flink SQL构建流批一体的ETL数据集成,强调了Flink在数据仓库和数据集成中的作用。Flink通过原生支持CDC,强化维表JOIN能力,以及流式写入Hive等功能,简化了数据接入、数据转换和数据入仓的过程,实现了实时与离线数据仓库的统一,提高了数据一致性和时效性,降低了维护成本。文章还探讨了Flink在数据接入(包括数据库和日志接入)、数据入仓湖(如流式入Hive和Iceberg)、数据打宽(使用Regular Join、Interval Join、Temporal Join等)等方面的应用和优势。
订阅专栏 解锁全文
452

被折叠的 条评论
为什么被折叠?



