ABACUS-SQL:一个赋能跨领域和开放领域数据库检索的文本到SQL系统

许凯岩,王定子睿,张轩亮,朱庆福,车万祥* 哈尔滨工业大学 {kyxu, dzrwang, xuanliangzhang, qfzhu, car}@ir.hit.edu.cn

摘要

现有的文本到SQL系统在SQL查询生成方面取得了显著进展,但仍面临诸多挑战。现有系统通常缺乏对开放领域数据库的检索能力,需要用户手动过滤相关数据库。此外,其跨领域迁移能力有限,难以满足多样化的查询需求。为解决这些问题,我们提出了ABACUS-SQL。ABACUS-SQL利用数据库检索技术,在开放领域数据库环境中准确定位所需数据库。它还通过数据增强方法提高了系统的跨领域迁移能力。此外,ABACUS-SQL采用Pre-SQL和Self-debug方法,从而提高了SQL查询的准确性。实验结果表明,ABACUS-SQL在多轮文本到SQL任务中表现出色,有效验证了该方法的有效性。ABACUS-SQL可在https://huozi.8wss.com/abacus-sql/.公开获取。

1 引言

文本到SQL (Yu et al., [2019b)
以前的文本到SQL系统(Zeng et al., [2020,
尽管现有的文本到SQL系统在SQL查询生成方面取得了显著进展,但它们仍然面临一些局限性(表1)。当前系统缺乏高效的数据库检索能力,在开放领域数据库环境中难以自动定位所需的数据库,迫使用户手动筛选数据库,这降低了系统的通用性和效率。此外,现有系统在跨领域迁移能力方面表现有限,因为大多数系统需要针对特定领域进行预训练。这种限制使其在不同领域的适用性受到限制,越来越难以满足专业数据库的查询需求。

为解决现有文本到SQL系统的上述局限性,我们开发了ABACUS-SQL,重点提升多数据库检索性能和跨领域迁移能力,并引入了几种创新方法以优化SQL生成。首先,ABACUS-SQL通过利用束搜索和查询重写支持开放领域数据库中的检索,从而准确定位所需数据库。其次,ABACUS-SQL通过利用数据增强方法表现出强大的跨领域迁移能力,合成了基于领域特定数据库的示例,使系统能够快速适应不同的领域需求。此外,ABACUS-SQL集成了pre-SQL和self-debug方法,确保即使在复杂的查询场景下也能生成高质量的SQL,从而进一步提升系统的实用性和可靠性。

总体而言,我们开发了ABACUS-SQL,这是一个专为跨领域和开放领域数据库环境设计的强大文本到SQL系统。我们的主要贡献如下:

  • 数据库检索能力:为应对多数据库环境中的检索挑战,ABACUS-SQL采用开放领域数据库检索方法,实现相关数据库的高效检索。
    • 跨领域迁移能力:为增强跨领域迁移能力,ABACUS-SQL利用数据增强方法从领域特定数据库中合成示例,显著提升跨领域适应性。
    • 系统优化:为提高SQL查询生成的质量,ABACUS-SQL整合了多种创新方法,显著提升了结果的准确性。

2 相关工作

2.1 多轮文本到SQL

早期的多轮文本到SQL研究主要依赖于深度神经网络模型,通过专门架构改进SQL生成的准确性。例如,Wang et al. [(2020)
提出利用先前的SQL查询来提高解析准确性和上下文理解,而RASAT (Qi et al., [2022)
随着大型语言模型(LLMs)的发展,基于LLM的方法逐渐成为主流,在无需额外微调的情况下实现了高性能,从而减少了对大数据集和计算资源的依赖(Hong et al., [2024)

2.2 文本到SQL系统

近年来,文本到SQL技术取得了显著进步,催生了各种开源工具,简化了用户与数据库的交互,使非专家用户能够轻松访问所需数据。DB-GPT (Xue et al., [2024)
然而,现有系统往往缺乏对开放领域数据库的检索功能,增加了用户操作的复杂性和时间成本。它们也难以实现跨领域迁移,难以适应不同的数据结构和查询需求。因此,增强系统在多数据库环境中的领域迁移能力和适应性是文本到SQL系统的关键挑战。

3 系统工作流程

在本节中,我们介绍系统的运行流程,该系统旨在解决先前系统存在的不足,包括检索能力不足、迁移能力有限以及SQL生成欠佳等问题。如图1, 所示,工作流程包括三个核心阶段:预处理、多轮文本到SQL和展示。为克服现有系统的缺点,我们实施了几项优化措施。首先,我们采用Murre方法(第[3.1.1节])进行自动检索,提取与给定查询相关的数据库。其次,我们利用融合方法(第[3.1.2节])进行数据增强,增强系统的跨领域迁移能力。最后,在SQL生成阶段,我们引入Pre-SQL(第[3.2.2节])和Self-debug(第[3.2.3节]),以提高SQL生成的准确性。

3.1 预处理

在初始数据预处理阶段,我们通过三个关键步骤为后续的SQL生成做准备:开放领域数据库检索、演示增强和选择,以及数据库模式信息提取。

3.1.1 开放领域数据库检索

我们首先根据用户的查询和上传的数据库自动识别并选择最相关的数据库。这一过程包括两个步骤:数据库匹配,将用户查询与数据库模式和元数据对齐,以确定可能包含目标信息的数据库;以及数据库优先级排序,评估并排名多个相关数据库,以选择最适合的一个。具体来说,我们采用了来自(Zhang et al., [2024b)

3.1.2 演示选择

我们从领域特定数据集中选择演示(Dong et al., [2024)

3.1.3 模式提取

在此处,我们系统地从之前选择的数据库中提取表模式,并将数据库结构与用户查询精确对齐。首先,我们从数据库中检索表名、列名、数据类型及其底层关系,并将其组织成易于大型语言模型(LLM)解释的格式。然后,通过将用户查询中的字段与数据库内容对齐,确保模型准确识别查询意图,从而使生成的SQL能够正确映射到相关的表和字段。

3.2 多轮文本到SQL
3.2.1 提示

本节旨在利用预处理输出构建高质量的提示(详见附录[C]),引导模型在多轮对话场景中准确生成SQL查询。具体包括:系统提示,定义模型的角色、任务和输出规格;少量演示,提供高度相关的参考,帮助模型更好地理解查询要求;模式,概述数据库结构和关系;以及多轮对话,利用历史上下文捕捉语义关联和意图

7B32B
数据集方法QEXIEXQEXIEX
Chase-CQwen2.5-Coder40.411.146.518.0
+ ABACUS-SQL45.515.053.523.1
SParCQwen2.5-Coder67.345.769.046.9
+ ABACUS-SQL68.446.969.647.4
CoSQLQwen2.5-Coder69.440.372.041.3
+ ABACUS-SQL70.642.373.142.7

表2:有无ABACUS-SQL的主要实验结果。每种设置下的最佳结果用粗体标记。

转移,从而提高查询准确性。

3.2.2 Pre-SQL

考虑到多轮对话中过多的表信息可能干扰模型对用户意图的理解,我们首先专注于过滤掉与用户查询无关的表信息。在此阶段,我们使用提示作为输入,引导大型语言模型预生成SQL查询(Li et al., [2024)

3.2.3 自我调试

自我调试(Wang et al., [2024a)

3.3 展示

为了增强用户体验,ABACUS-SQL提供了一种透明的交互机制,使用户能够清楚了解SQL生成过程并获得实时查询结果。

推理过程可视化 系统逐步解释SQL生成和细化过程,帮助用户更好地理解查询。

实时执行结果 SQL查询结果显示为表格格式,使用户能够快速验证生成SQL的准确性,增强互动体验。

4 系统设计

本节介绍了Abacus-SQL的网页设计,以帮助用户更好地了解系统的功能以及如何与之交互。

4.1 前端

ABACUS-SQL的前端(图2) 使用Streamlit [(Streamlit,
用户认证 集成轻量级登录系统,支持账户注册和加密密码存储,以及Huozi (Huozi-Team, [2024)
会话管理 支持多会话管理,允许用户存储查询历史和对话上下文,从而增强交互连续性和可追溯性。

数据库内容可视化 提供直观的界面,清晰显示数据库表、字段和数据,使用户能够轻松浏览和验证SQL查询。

流式输出 支持SQL生成过程的实时流式传输,减少等待时间,让用户更早访问部分结果,从而提升互动体验。

4.2 后端

ABACUS-SQL的后端基于FastAPI构建,提供高效灵活的服务能力,同时优化流式输出支持。后端使用Qwen2.5-Coder-7B (Hui et al., [2024)

5 实验

5.1 实验设置

数据集 ABACUS-SQL多轮文本到SQL评估基准基于三个数据集:Chase-C (Guo et al., [2021)
指标 为了评估ABACUS-SQL的性能,我们使用两个指标:问题执行准确率(QEX)和交互执行准确率(IEX)(Zhang et al., [2024a)
模型 我们使用Qwen2.5-Coder 7B和32B评估ABACUS-SQL在多轮文本到SQL任务上的性能。Qwen2.5-Coder (Hui [et al.,

5.2 主要结果

如表2, 所示,ABACUS-SQL在所有数据集上相比基线都有所改进,尤其是在Chase-C数据集上观察到了显著的提升,突显了其在此领域的强大竞争力。我们还对Pre-SQL和Self-debug方法进行了消融实验,发现这两种方法都能提高系统性能,特别是在中文数据集上效果更为显著,从而验证了这些方法的有效性。(附录[D])。这一结果强调了ABACUS-SQL在多轮对话理解和SQL生成方面的卓越能力,表明其在结合数据库查询和自然语言处理的应用中具有巨大潜力。

6 结论

我们提出了ABACUS-SQL,这是一种新型的多轮对话导向文本到SQL系统,旨在增强数据库检索、跨领域迁移能力和SQL生成的准确性和效率。ABACUS-SQL解决了现有系统面临的挑战,如无法从开放领域数据库环境中高效检索相关数据库以及在不同领域间迁移困难。通过整合Murre方法以实现高效的数据库检索、Fused方法以提高数据泛化能力,以及结合Pre-SQL和Selfdebug以优化查询解析,ABACUS-SQL在处理复杂查询任务时表现出卓越的适应性和稳定性。这些结果验证了其在实际应用中的有效性。

参考文献

  • 陈欣云,林麦克斯韦尔,沙尔利·内萨尼,周德尼。2023。教导大型语言模型自我调试。 arXiv预印本
    • DeepSeek-AI,郭达雅,杨德健,张浩伟,宋军霄,张若宇,徐润鑫,朱启昊,马世荣,王培宜,毕晓,张小康,余兴凯,吴宇,吴志峰,郭智斌,邵志宏,李卓澍,高子一,刘爱新,薛冰,王炳宣,吴博超,冯贝,卢诚达,赵成刚,邓成奇,张晨雨,阮冲,戴大迈,陈德利,吉东杰,李尔航,林方云,戴富聪,罗福立,郝光波,陈冠廷,李国伟,张海,鲍涵,许汉维,王浩程,丁红辉,辛华剑,高华左,屈慧,李慧,郭建忠,李家石,王景昌,袁静阳,丘俊杰,王家卫,梁文锋,王文君,余文琴,张闻涛,肖文磊,安伟,刘小东,王霞涵,陈小康,聂晓涛,程心,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠,周新意,王先祖,山新霞,李永康,李双周,吴少清,叶胜丰,云涛,裴天,孙天宇,汪腾,增王鼎,赵婉佳,刘温,梁文骏,高文琴,张文俊,萧文雷,安伟,刘小桃,陈滨雪,王霞河,王芳,张文军,柳小龙,刘文,梁文俊,余文琴,张文婷,曾旺丁,赵文佳,王文玲,肖文龙,李文蕾,安伟,刘小东,王霞含,陈小寒,王小塔,倪晓涛,程欣,刘欣,谢新,刘星潮,杨昕宇,李新源,苏学成,林旭恒,李湘泉,李相月,金相岳,沈晓金,陈晓莎,孙晓文,王小翔,宋欣楠。
      参考 Paper:https://arxiv.org/pdf/2504.09824.tar.gz
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Paper易论

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值