转载自:http://www.chinabaike.com/z/keji/ck/648512.html
特征分析法又称决策模拟,它是从变量中提取各变量具有的综合特征。它与线形代数中的特征值的概念不同,该方法是应用求解特征向量的数学方法确定变量的综合特征——变量的定量特征。
矿产资源评价结果的正确程度决定于原始数据的完备程度和精确程度,由于种种原因,原始数据有不充分的一面,这是引起矿产资源评价结果不确定的原因之一。一种补救办法就是特征分析,它能帮助矿产资源评价人员减少这种不确定性。特征分析是运用矿床的三维环境(包括地形环境、物理性质、化学性质和卫星景象特征)以及矿床产地的形成作用(即成因)的数据来检查矿床模型,快速确定评价区的评价对象(单元或矿点)与已知模型的相似程度,或产出矿床的有利程度。
特征分析包括四个概念,即二维二次导数曲面、布尔转换、最优模型公式和预测区的评价。
(一)二维二次导数曲面
以连续变量构成的二维空间曲面(平面或等值线表示均可),通常取其垂直平面等值线方向上的二阶方向导数的符号定义逻辑变量。二阶方向导数为负,说明低于邻近地区,为低异常,取-1;二阶方向导数为0,即拐点,为无异常,取值为0。使用二维曲面的二次导数的拐点,限定了原始数据观察值空间分布的特征(即类型),它们消除了其他数学方法充分依赖于空间相关的数学原则。因该法处理连续变量,特别是物探和化探变量,不仅展示了观察值的总体特征,而且在总体背景(背景场)上的局部变化特征也显示也来。二维曲面的二次导数这一性质,为建立特征分析的矿床模型提供了有效方法。
(二)布尔转换
布尔转换也称布尔表达式,它是用三元逻辑来表达不同性质的地质变量。三元逻辑结构是把有意义项标作“1”,不确定意义项标作“0”,无意义或意义相反的项标作“-1”。在一个特定的位置上这种“1”、“0”或“-1”的表达形式是特征分析的多元素结构数据类型中应用的关键。
据此理论可以断定,地质变量无论是定性的还是定量的,都可以用三元逻辑来表示。在矿产资源评价中通常使用大量的定性数据和离散数据,它需要由资源评价人员根据布尔转换的方法原理主观决定。通常采用下列原则进行转换:该变量与矿产资源量有关时,标作“1”;无关时标作“-1”;不确定或无意义时标作“0”。据此可知,把地质数据转换成三元逻辑变量是多元结构的地质应用特征分析方法的关键。
据此理论可以断定,地质变量无论是定性的还是定量的,都可以用三元逻辑来表示。在矿产资源评价中通常使用大量的定性数据和离散数据,它需要由资源评价人员根据布尔转换的方法原理主观决定。通常采用下列原则进行转换:该变量与矿产资源量有关时,标作“1”;无关时标作“-1”;不确定或无意义时标作“0”。据此可知,把地质数据转换成三元逻辑变量是多元结构的地质应用特征分析方法的关键。
需要强调的是,定义逻辑变量时,+1和-1所代表的必须是逻辑上对应的概念,在这样的定义域内,0的意义就不言自明了。若用网格单元对某地区的资源潜力进行评价,则所有变量经上述转换后,就会得到逻辑变量的矩阵。以8个单元、8个变量为例,其中知阵的行表示单元,列表示变量,则:

(三)最优模型公式
最优模型公式也叫模型特征定量化。一个矿床上(或单元内)能取的地矿变量(或描述一个矿床的地矿变量)很多。少则十几个,多者上百个。但对一个类型的矿床而言,各地矿变量的重要性是不一样的,所以要给每个变量赋权。根据这个权,对所有地矿变量进行排队,显示出各变量在该类型矿床上的重要性次序,为筛选变量提供定量依据。以下介绍模型特征定量化的3种方法。
(1)平方和法(原始算法)。假设已将原始数据转换成逻辑变量,逻辑变量矩阵为Z。首先将Z用自己的转置矩阵左乘,得乘积矩阵(又称关联矩阵):

R中第i行、第j列元素r
ij,表示在n个单元中第i、j两变量间的匹配关系。显然,两个变量在各单元中+、+或-、-匹配情形出现越多,则r
ij大。若+、-或-、+的情形出现多,则r
ij减小;甚至r
ij为负值。至于0、+或0、-的情形,则不影响r
ij的值。因此R正是几个单元中i、j两变量同时依存关系的一种度量。将R的各列视为一个向量。则第i个向量的长度为:

此模型表示了第i个变量与其他变量间依存关系的总度量。于是,可以将该向量长度视为变量对该类型矿床关联程度的度量。上述例子中各列向量的长度分别为:
SSQ(1)=10.91 SSQ(2)=13.45 SSQ(3)=13.04 SSQ(4)=14.07
SSQ(5)=15.97 SSQ(6)=15.06 SSQ(7)=13.53 SSQ(8)=10.44

SSQ(i)
bi=------------(i=1,2,3…,m)
STOT
上述例子中:
b
1=0.1025(7) b
2=0.1263(5) b
3=0.1225(6) b
4=0.1321(3)
b
5=0.1500(1) b
6=0.1414(2) b
7=0.1271(4) b
8=0.0980(8)
圆括号中是将它们按数值大小进行排队的次序。因此,对例中所举的模型而言,第5个变量是最重要的特征,b
5=0.1500是它获得的权系数;其次是第6个变量权,系数b
6=0.1414;再其次是第4个变量,权系数b
4=0,1321,……。
(2)乘积矩阵主分量法。这种方法是通过计算一个乘积矩阵的列向量的长度来讨论一个矿床或单元模型中各个变量的权。它先是孤立地研究在模型中一个变量与另一个变量之间的关联程度,然后将该变量与各变量关联程度的度量的平方和作为该变量与所有其与变量之间的依存关系。如果不是仅仅考虑一个变量,而是同时考虑所有变量在矿床模型中的共存关系,则需要使用求乘积矩阵的特征向量的方法——主分量分析法。
主分量分析法用对应与最大特征向量A
1表示该类型矿床模型中各类变量的典型共存关体系,即地质变量的典型组合。A
1的各元素a
1,a
2……a
n表示了各变量对该典型组合的贡献。因此,各元素可作为各变量的权系数,用来评价未知区与模型的相似性。
上述乘积矩阵为例,对应于最大特征值的特征向量各元素为:
①0.1067(7); ②0.352(5); ③0.372(2); ④0.372(2);
⑤-0.475(8); ⑥0.475(1); ⑦0.349(4); ⑧-0.116(6);
圆括号中为按其取值大小的排列顺序。它表明,第6个变量权最大,是模型中占最重要地位的变量,其次是第3,第4个变量,再其次是第7个变量。他们的权分别是0.475,0.372,0.372,0.349……。
(四)概率矩阵主分量法
此方法是从单元中各变量之间的匹配概率出发,研究模型中变量与变量之间的依存关系。第i和第j个变量之间的匹配概率P
ij是用几个单元中不被随机超越的第i个和第j个变量之间+、+和—、—匹配的被观测数的概率来表示,计算P
ij的公式如下:
令n——单元数;
t
i——第i个变量中“+”的个数;
t
j——第j个变量中“+”的个数;
P
i——第i个变量中“+”和“—”的个数;
P
j第j个变量中“+”和“—”的个数;
k
ij——在n个单元中第i个变量和第j个变量间+、+或—、—匹配的被配的被观察数;
P
ij——被随机超越的第i、j变量间+、+或—匹配的被观察数k的概率。
被随机超越的第i、j变量间+、+或—、—匹配的被观测k的概率为:

该公式在运算过程中,当k
ij=0时,P
ij=0;当t
ij-(b-1)+1≤0时,大括号内取值为1。当P
i-t
i-(a-1)+(b-1)+1≤0时,方括号内取值为1。
P
ij构成一个对称矩阵P,称为匹配概率矩阵。
计算P
ij的具体体步骤如下:
(1)计算匹配矩阵(又称Telly矩阵):从前面举例的逻辑矩阵Z出发,分别计算各列之间+、+匹配数和—、—匹配数。得以下矩阵:

该矩阵中对角元素t
ij(第i行第j列元素)是第i个变量自身的“+、+”匹配数。它显然等于第个变量中“+”的个数,上三角矩阵中第i列元素t
ij是第i个变量与第j个变量间的“+、+”匹配数。下三角矩阵的第i行第j列元素p
ij是第i、j变量的“—、—”匹配数。
(2)计算第i、j二变量间“+、+”和“—、—”匹配数kij,显然k
ij=t
ij+p
ij。再按求匹配概率的公式计算第i、j二个变量的匹配概率p
ij。为方便计算,将k
ij和p
ij置于同一知阵中。矩阵k中上三角为不同变量间+、+和—、—匹配数之和k
ij,下三角矩阵为各变量之间匹配概率k
34=7,则对应的匹配概率为p
44=100,第二和第六个变量间“+、+”和“—、—”的匹配数为k
26=6,对应的匹配概率为p
62=96,则:

显然与乘积矩阵K一样,概率矩阵P也是某种意义上的一种关联矩阵。因此,同样可以利用主分量分析方法,求其特征值和特征向量。与其最大特征值对应的特征向量的各元素,也可作为各变量的权,用于评价预测区与模型之间的相似性。
例如上举例的概率矩阵,其最大特征值所对应的特征向量为:
①0.079(5); ②0.433(4); ③0.442(2); ④0.442(2);
⑤0.078(7); ⑥0.470(1); ⑦0.437(3); ⑧0.066(6);
圆括号中数值是将它们按数值大小进行排队的顺序。可知第六个变量的值最大,其次为第三和第四两个变量,再次是第七个变量,……。
以上介绍了模型定量化的三种方法。他们是从不同角度对已知含矿单元中各个变量间的相互依存关系(关联)进行分析,确定了各个变量在该类型矿床模型中的相对重要性—“权”。这就给人们提供了筛选变量,构造评价模型的依据。