# 代码


public class Cal_sta {
double Sum(double[] data) {
double sum = 0;
for (int i = 0; i < data.length; i++)
sum = sum + data[i];
return sum;
}

double Mean(double[] data) {
double mean = 0;
mean = Sum(data) / data.length;
return mean;
}

// population variance 总体方差
double POP_Variance(double[] data) {
double variance = 0;
for (int i = 0; i < data.length; i++) {
variance = variance + (Math.pow((data[i] - Mean(data)), 2));
}
variance = variance / data.length;
return variance;
}

// population standard deviation 总体标准差
double POP_STD_dev(double[] data) {
double std_dev;
std_dev = Math.sqrt(POP_Variance(data));
return std_dev;
}

//sample variance 样本方差
double Sample_Variance(double[] data) {
double variance = 0;
for (int i = 0; i < data.length; i++) {
variance = variance + (Math.pow((data[i] - Mean(data)), 2));
}
variance = variance / (data.length-1);
return variance;
}

// sample standard deviation 样本标准差
double Sample_STD_dev(double[] data) {
double std_dev;
std_dev = Math.sqrt(Sample_Variance(data));
return std_dev;
}

}



# 测试代码

public class testcal_sta {
public static void main(String arg[]) {
Cal_sta cal = new Cal_sta();
double[] testdata = {2, 4, 6, 7, 8, 9, 12, 36};
System.out.println("总和Sum  " + cal.Sum(testdata));
System.out.println("平均值Mean  " + cal.Mean(testdata));
System.out.println("总体方差Population Variance  " + cal.POP_Variance(testdata));
System.out.println("总体标准差Population STD_dev   " + cal.POP_STD_dev(testdata));
System.out.println("样本方差Sample Variance  " + cal.Sample_Variance(testdata));
System.out.println("样本标准差Sample STD_dev   " + cal.Sample_STD_dev(testdata));
}
}


# 对比

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试