
这个表格里 “精度举例”一列不是在讲小数有几位,而是:
举的是“能分辨的最小差值单位”(也叫 machine epsilon / ULP 单位),用于表示数值之间最小可区分的差异,即精度粒度。
🧠 什么是“精度”?
这个“精度”的意思是:
两个相邻浮点数之间的最小差值,也可以理解为 该数据类型下,两个不同数字之间的最小可区分单位(resolution)
比如:
- FP32 精度是约
1.2e-7,意味着它能区分1.0000000和1.0000001,但分辨不了1.0000000001。 - FP16 精度约
1e-3,也就是说1.000和1.001可以区分,但更细的就不行了。
✅ 所以,表格中“精度举例”表达的是:
| 类型 | 精度粒度举例(Δ) | 能区分的范围 |
|---|---|---|
| FP32 | 约 1.2e-7 | 能区分 1 和 1.0000001 |
| FP16 | 约 1e-3 | 能区分 1 和 1.001 |
| BF16 | 约 1.95e-2(1/2⁷) | 能区分 1 和 1.02 |
| INT8 | 精度为整数 1,只能区分整数 | 无法区分 1.1 和 1.2 等小数 |
❓是不是没考虑“小数位”?
要分情况:
✅ 浮点数(FP32、FP16、BF16)
这些类型虽然在内部分配了尾数位(小数部分的比特位),但“精度”不是指能表示几位小数,而是指:
在 数值靠近某个数值(如 1.0)时的最小可分辨间隔
这个间隔是由 尾数位的长度和指数位的大小共同决定的,所以不是简单地说“小数点后能表示几位”。
举个例子:
FP16 的尾数只有 10 位,它表示 1.000 和 1.001 是区分得了的,但 1.0005 就分不清了。
❌ INT8 是整数类型
INT8 不是浮点数,所以它没有尾数位,也就不能表示小数。
| 数据类型 | 是否有小数? | 小数精度? |
|---|---|---|
| FP32 | 有 | 高精度(7~8位十进制) |
| FP16 | 有 | 低精度(~3位十进制) |
| BF16 | 有 | 很低( |
| INT8 | ❌ 无 | 精度=1,不能表示小数 |
✅ 最后总结一句话
表格里的“精度举例”并不是描述能表示多少位小数,而是描述:在接近某个数值时,两个可表示数之间的最小差距(Δ)是多少。
这个是由尾数位和指数范围共同决定的数值分辨率,不是简单的小数位数概念。
如果你需要,我可以提供一个 Python 脚本,对比 FP32/FP16/BF16 在不同数值下的实际精度差值(ULP),比如:
import numpy as np
np.nextafter(1.0, 2.0, dtype=np.float32) - 1.0 # 输出 FP32 的最小精度

5403

被折叠的 条评论
为什么被折叠?



