什么是“精度”?

在这里插入图片描述

这个表格里 “精度举例”一列不是在讲小数有几位,而是:

举的是“能分辨的最小差值单位”(也叫 machine epsilon / ULP 单位),用于表示数值之间最小可区分的差异,即精度粒度


🧠 什么是“精度”?

这个“精度”的意思是:

两个相邻浮点数之间的最小差值,也可以理解为 该数据类型下,两个不同数字之间的最小可区分单位(resolution)

比如:

  • FP32 精度是约 1.2e-7,意味着它能区分 1.00000001.0000001,但分辨不了 1.0000000001
  • FP16 精度约 1e-3,也就是说 1.0001.001 可以区分,但更细的就不行了。

✅ 所以,表格中“精度举例”表达的是:

类型精度粒度举例(Δ)能区分的范围
FP321.2e-7能区分 11.0000001
FP161e-3能区分 11.001
BF161.95e-2(1/2⁷)能区分 11.02
INT8精度为整数 1,只能区分整数无法区分 1.1 和 1.2 等小数

❓是不是没考虑“小数位”?

要分情况:

✅ 浮点数(FP32、FP16、BF16)

这些类型虽然在内部分配了尾数位(小数部分的比特位),但“精度”不是指能表示几位小数,而是指:

数值靠近某个数值(如 1.0)时的最小可分辨间隔

这个间隔是由 尾数位的长度和指数位的大小共同决定的,所以不是简单地说“小数点后能表示几位”。

举个例子:

FP16 的尾数只有 10 位,它表示 1.0001.001 是区分得了的,但 1.0005 就分不清了。


❌ INT8 是整数类型

INT8 不是浮点数,所以它没有尾数位,也就不能表示小数。

数据类型是否有小数?小数精度?
FP32高精度(7~8位十进制)
FP16低精度(~3位十进制)
BF16很低(12位十进制)
INT8❌ 无精度=1,不能表示小数

✅ 最后总结一句话

表格里的“精度举例”并不是描述能表示多少位小数,而是描述:在接近某个数值时,两个可表示数之间的最小差距(Δ)是多少

这个是由尾数位和指数范围共同决定的数值分辨率,不是简单的小数位数概念。


如果你需要,我可以提供一个 Python 脚本,对比 FP32/FP16/BF16 在不同数值下的实际精度差值(ULP),比如:

import numpy as np
np.nextafter(1.0, 2.0, dtype=np.float32) - 1.0  # 输出 FP32 的最小精度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值