圆整通常被理解为为满足某种要求而进行的数据修正。按照修正后的数据在数值上是否比原数据大,又可分为向上圆整和向下圆整。它们很像对模拟信号进行采样,对一定范围的数据向一个固定的数据靠拢。Linux内核中定义了面向整除的圆整计算宏。第一个叫做roundup。
#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))roundup类似于一个数学函数,它总是尝试找到大于x并接近x的可以整除y的那个数,也即向上圆整。那么为何内核不同是提供roundown宏定义呢?这是由于对于整型相除而言,所得的结果本身就是向下圆整的了。所以roundown可以很容易定义:
#define roundown(x, y) (((x) / (y)) * (y))那么如何理解roundup的定义呢?看起来是尝试将(x) + ((y) - 1)的结果对y做向下取整,为何这样就可以实现x对y的向上取整呢?除法的本质在于对量的均分,那么观察下图:
对于x = βy + δ来说,β>=0,y>0,并且0<=δ<y。因为y>0且为整数,那么0<=δ<y等价于0<=δ<=y-1。对于圆整运算来说,可以将x中可以整除y的部分βy提取出来,只对剩下的δ部分做圆整运算然后加上βy。同理这里对δ+y-1部分进行圆整,由于0<=δ<=y-1,得到y-1 <= δ + y-1 <= 2y-2。考虑两种情况: 当可以整除时,δ=0,也即取y-1,显然圆整值为0,也即不用向上圆整;而不可整除时,δ>0,所以y-1 < δ + y-1 <= 2y-2,又因为y为整数,所以y <= δ + y-1 <= 2y-2成立,由于y=1时符合第一种情况,所以只需考虑y>=2的情况。y==y并且2y-2在y>=2时>=y且<2y,所以保证δ + y-1的圆整值为1,也即不整除则要始终向上圆整。
一种更易被人理解的定义方式如下,它根据取余的结果计算圆整,由于整除的概率很低,所以这种算法每次都要多计算一次取余,而不能完全避免对除法的运算以消减取余算法的影响,它的效率要低。#define roundup(x, y) ((x)%(y) ? ((x)/(y) + 1) * (y) : x)一段如下的测试程序可以看到它的作用:
int divisor = 0; printf("divisor\troundup\trounddown\n"); for(; divisor < 5; divisor++) printf("%d:\t%d\t%d\n", divisor, roundup(divisor, 2), roundown(divisor, 2));输出结果如下:
divisor roundup rounddown 0: 0 0 1: 2 0 2: 2 2 3: 4 2 4: 4 4内核提供的另一个宏DIV_ROUND_UP用来对除法的结果进行圆整,也即总是取大于n并接近n的那个数整除d后的结果。DIV_ROUND_UP类似于roundup,只是少了乘的动作,原理也是相同的。
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))DIV_ROUND_UP的处理结果如下:
0, 0 1, 1 2, 1 3, 2 4, 2圆整可以通过除法实现,另一种实现方式是通过对低比特位进行清0操作,但是它们只适合对对齐到2的幂指数的操作有效。