离散数学之集合代数

集合论是数学的基础,描述了元素与集合的关系,如隶属、包含等。集合间的运算如并集、交集和差集有特定的运算规则。有序对和笛卡尔积是构建更复杂结构的基础,为空集的笛卡尔积仍为空集。幂集是所有子集构成的集合,含有2的n次方个元素。全集是考虑问题时的大背景,而子集、真子集和相等集合的概念则定义了集合间的关系。
摘要由CSDN通过智能技术生成

集合概念

把一些元素汇集成一个整体称之为集合

集合与元素间的关系是隶属关系。属于,记 ∈ \in ; 不属于,记 ∉ \notin /

集合与集合间的关系是包含关系。包含,记 ⊆ \subseteq ;不包含,记 ⊈ \nsubseteq

如果 A ⊆ B A \subseteq B AB B ⊆ A B\subseteq A BA,则称 A A A B B B 相等,记 A = B A = B A=B

如果 A ⊆ B A \subseteq B AB A ≠ B A\neq B A=B,则称 A A A B B B 的真子集,记 A ⊂ B A \subset B AB

不含任何元素的集合称作空集,记 ∅ \varnothing 。空集是一切集合的子集(包括空集自己)

含有 n n n 个元素的集合称作 n n n 元集,含有 m m m m ⩽ n m \leqslant n mn)个元素的子集,称作它的 m m m 元子集

A A A 集合的全体子集构成的集合称为幂集,记 P ( A ) P(A) P(A)

A A A n n n 元集,则他的幂集有 2 n 2^n 2n 个元素

在具体问题中,所涉及的集合是某个集合的子集,则称这个集合为全集,记 E E E

集合运算

在这里插入图片描述

A ∪ B = A + B − ( A ∩ B ) A \cup B = A + B - (A \cap B ) AB=A+B(AB)

∼ A = E − A \sim A = E - A A=EA

A ⨁ B = ( A ∪ B ) − ( A ∩ B ) = ( A − B ) ∪ ( B − A ) A\bigoplus B =(A \cup B) - (A \cap B) = (A - B) \cup (B - A) AB=(AB)(AB)=(AB)(BA)

注:集合运算直接画文氏图

集合恒等式与命题逻辑的等值式一样,联合记忆

有序对与笛卡尔积

有序对:两个元素按照顺序排列而成的二元组 < x , y > <x,y> <x,y> x x x 是第一元素, y y y 是第二元素

笛卡尔积:集合 A A A 中的元素作为第一元素,集合 B B B 中的元素作为第二元素,所构成的有序对。记 A × B A \times B A×B

注:任何集合与空集的笛卡尔积仍为空集。笛卡尔积一般不满足交换律和集合律

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值