http://www.lydsy.com/JudgeOnline/problem.php?id=1036
Description
一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 III. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身
Input
输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。 对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。
Output
对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。
Sample Input
4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
Sample Output
4
1
2
2
10
6
5
6
5
16
1
2
2
10
6
5
6
5
16
HINT
Source
/**
HYSBZ 1036 树链剖分(单点更新区间求和求最大值)
*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn=30005;
int fa[maxn],dep[maxn],siz[maxn],son[maxn],top[maxn],num[maxn];
int n,q,z,a[maxn],Hash[maxn];
int tree[maxn*4],maxx[maxn*4];
int head[maxn],ip;
void init()
{
memset(head,-1,sizeof(head));
ip=0;
}
struct note
{
int v,next;
} edge[maxn*2];
void addedge(int u,int v)
{
edge[ip].v=v,edge[ip].next=head[u],head[u]=ip++;
}
void dfs(int u,int pre)
{
fa[u]=pre,siz[u]=1,dep[u]=dep[pre]+1;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v;
if(v==pre)continue;
dfs(v,u);
siz[u]+=siz[v];
if(siz[son[u]]<siz[v])
{
son[u]=v;
}
}
//printf("%d siz fa dep son %d %d %d %d\n",u,siz[u],fa[u],dep[u],son[u]);
}
void init_que(int u,int tp)
{
num[u]=++z,top[u]=tp,Hash[z]=u;
if(son[u])
{
init_que(son[u],tp);
}
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v;
if(v==son[u]||v==fa[u])continue;
init_que(v,v);
}
///printf("%d top num %d %d\n",u,top[u],num[u]);
}
void push_up(int root)
{
tree[root]=tree[root<<1]+tree[root<<1|1];
maxx[root]=max(maxx[root<<1],maxx[root<<1|1]);
}
void build(int root,int l,int r)
{
maxx[root]=-0x3f3f3f3f;
tree[root]=0;
if(l==r)
{
maxx[root]=tree[root]=a[Hash[l]];
return;
}
int mid=(l+r)>>1;
build(root<<1,l,mid);
build(root<<1|1,mid+1,r);
push_up(root);
}
void update(int root,int l,int r,int loc,int z)
{
if(l>loc||r<loc)return;
if(l==r)
{
maxx[root]=tree[root]=z;
return;
}
int mid=(l+r)>>1;
update(root<<1,l,mid,loc,z);
update(root<<1|1,mid+1,r,loc,z);
push_up(root);
}
int query(int root,int l,int r,int x,int y)
{
if(l>y||r<x)return 0;
if(x<=l&&r<=y)
{
return tree[root];
}
int mid=(l+r)>>1;
return query(root<<1,l,mid,x,y)+query(root<<1|1,mid+1,r,x,y);
}
int query1(int root,int l,int r,int x,int y)
{
if(l>y||r<x)return -0x3f3f3f3f;
if(x<=l&&r<=y)
{
return maxx[root];
}
int mid=(l+r)>>1;
return max(query1(root<<1,l,mid,x,y),query1(root<<1|1,mid+1,r,x,y));
}
int main()
{
//freopen("data.txt","r",stdin);
while(~scanf("%d",&n))
{
init();
for(int i=1; i<n; i++)
{
int x,y;
scanf("%d%d",&x,&y);
addedge(x,y);
addedge(y,x);
}
for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
}
int root=(n+1)>>1;
z=0,dep[0]=0,siz[0]=0;
dfs(root,0);
init_que(root,root);
build(1,1,z);
scanf("%d",&q);
while(q--)
{
char s[15];
int x,y;
scanf("%s%d%d",s,&x,&y);
if(s[1]=='H')
{
update(1,1,z,num[x],y);
}
else if(s[1]=='S')
{
int f1=top[x],f2=top[y],sum=0;
while(f1!=f2)
{
if(dep[f1]<dep[f2])
{
swap(f1,f2);
swap(x,y);
}
sum+=query(1,1,z,num[f1],num[x]);
x=fa[f1],f1=top[x];
}
if(dep[x]>dep[y])
{
swap(x,y);
}
sum+=query(1,1,z,num[x],num[y]);
printf("%d\n",sum);
}
else
{
int f1=top[x],f2=top[y],sum=-0x3f3f3f3f;
while(f1!=f2)
{
if(dep[f1]<dep[f2])
{
swap(f1,f2);
swap(x,y);
}
sum=max(sum,query1(1,1,z,num[f1],num[x]));
x=fa[f1],f1=top[x];
}
if(dep[x]>dep[y])
{
swap(x,y);
}
sum=max(sum,query1(1,1,z,num[x],num[y]));
printf("%d\n",sum);
}
}
}
return 0;
}