POJ 2187 Beauty Contest(凸包直径)

本文介绍了一种计算点集中最远两点距离平方的方法——旋转卡壳算法。文章首先概述了如何通过构建凸包并利用对踵点的概念找到最远点对,接着详细解释了旋转卡壳算法的具体实现过程。

初级旋转卡壳get!


题意:给出一个点集,求点集中最远的两个点的距离的平方。


首先求一遍凸包(可以仅保留转折点),然后通过旋转卡壳(复杂度:o(nlogn))得到直径。

对于凸包的某一个点,凸包上总会有一个点距离它最远,并且是该点的对踵点。

对踵点:

如果过凸包上的两个点可以画一对平行直线,
使凸包上的所有点都夹在两条平行线之间或落在平行线上,
那么这两个点叫做一对对踵点。
最远距离点对一定是一对对踵点。




想象这两条平行线,渐渐旋转,最终和凸包上的一条边重合,如上图。


而对踵点与这条边构成的三角形,也一定是所有点和这条边构成的三角形中面积最大的。

按某一个固定的方向选择点,三角形的面积呈现先增后减的趋势。并且,按同一个方向选取下一条边时,下一个点的最远对踵点的次序,一定不会在前一个点的对踵点的前面(注意凸包的点是环状的,所以我怎么说都对...)。


对于算点与点之间的最远距离,显然是可以通过这个办法来计算的。


取最大值的时候,要考虑到一条边上有两个点。比如在图中,B的最远点是E,计算面积时,边BC上的最大三角形是BCE,但BE和CE两边都比较一次。


#include <algorithm>
#include <iostream>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
using namespace std;
#define eps 1e-10
#define MAXN 50010
#define max(x, y) (x > y ? x : y)
#define min(x, y) (x < y ? x : y)
#define sig(x) ((x > eps) - (x < -eps))
#define cross(o, a, b) ((p[a] - p[o]) ^ (p[b] - p[o]))

const double pi = acos(-1.0);

typedef struct Point
{
        int x, y;
        Point() {}
        Point(int _x, int _y):
                x(_x), y(_y) {}
        bool operator <(const Point &argu) const
        {
            return sig(x - argu.x) == 0 ? y < argu.y : x < argu.x;
        }
//        double dis(const Point &argu) const
//        {
//            return sqrt((x - argu.x) * (x - argu.x) + (y - argu.y) * (y - argu.y));
//        }
        int dis2(const Point &argu) const
        {
            return (x - argu.x) * (x - argu.x) + (y - argu.y) * (y - argu.y);
        }
        int operator ^(const Point &argu) const
        {
            return x * argu.y - y * argu.x;
        }
//        double operator *(const Point &argu) const
//        {
//            return x * argu.x + y * argu.y;
//        }
        Point operator -(const Point &argu) const
        {
            return Point(x - argu.x, y - argu.y);
        }
//        double len2() const
//        {
//            return x * x + y * y;
//        }
//        double len() const
//        {
//            return sqrt(x * x + y * y);
//        }
        void in()
        {
            scanf("%d%d", &x, &y);
        }
        void out()
        {
            printf("%d %d\n", x, y);
        }
}Vector;

inline double Cross(Point p[], int o, int a, int b)
{
    return (p[a] - p[o]) ^ (p[b] - p[o]);
}

int ConvexHull(Point p[], int n, int q[])
{
    sort(p, p + n);
    int top = 0;
    for(int i = 0; i < n; i++)
    {
        while(top > 1 && Cross(p, q[top - 2], q[top - 1], i) <= 0) top--;
        q[top++] = i;
    }
    int t = top;
    for(int i = n - 2; i >= 0; i--)
    {
        while(top > t && Cross(p, q[top - 2], q[top - 1], i) <= 0) top--;
        q[top++] = i;
    }
    top--;
    return top;
}

int RotatingCalipers(Point p[], int n, int q[])
{
    int ans = 0, c = 1;
    q[n] = q[0];
    for(int i = 0; i < n; i++)
    {
        while(Cross(p, q[c + 1], q[i], q[i + 1]) > Cross(p, q[c], q[i], q[i + 1])) c = (c + 1) % n;
        ans = max(ans, max(p[q[i]].dis2(p[q[c]]), p[q[i + 1]].dis2(p[q[c]])));
    }
    return ans;
}

Point pp[MAXN], c;
int n, hn, q[MAXN];
int solve()
{
    hn = ConvexHull(pp, n, q);
    //for(int i = 0; i < hn; i++) pp[q[i]].out();
    return RotatingCalipers(pp, hn, q);
}

int main()
{
//    freopen("2187.in", "r", stdin);

    while(~scanf("%d", &n))
    {
        for(int i = 0; i < n; i++) pp[i].in();
        printf("%d\n", solve());
    }
    return 0;
}


内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值