数据预处理

本文介绍了在深度学习中,如何对图像数据进行预处理,包括读取JPEG文件、解码、转换为浮点数张量并缩放像素值。Keras的`ImageDataGenerator`类提供了自动化这一过程的工具,它可以生成预处理后的张量批量,用于模型训练。通过`fit_generator`方法,模型可以使用该生成器进行拟合,并通过指定`steps_per_epoch`参数来控制每轮训练中使用的样本数量。
摘要由CSDN通过智能技术生成

  我们已经知道,将数据输入神经网络之前,应该将数据格式化为经过预处理的浮点数张量。现在,数据以JPEG文件的形式保存在硬盘中,所以数据预处理步骤大致如下。

  • 读取图像文件。
  • 将JPEG文件解码为RGB像素网格。
  • 将这些像素网格转换为浮点数张量。
  • 将像素值(0-255范围内)缩放到[0,1]区间(正如你所知,神经网络喜欢处理较小的输入值)。

  这些步骤可能看起来有点吓人,但是Keras拥有自动完成这些步骤的工具。Keras有一个图像处理辅助工具的模块,位于keras.preprocessing.image。特别地,它包含ImageDataGenerator类,可以快速创建Python生成器,能够将硬盘上的图像文件自动转换为预处理好的张量批量。下面我们将用到这个类。

from keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
                        train_dir,
                        target_size = (150,150),
                        batch_size = 20,
                        class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
               
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值