在模式识别领域谈随机变量

概率论之所以难,是因为它抽象,没有落点,模式识别正好是它的一个落点。

从随机现象到样本空间到随机变量的取值。然后就可以谈分布了。有了分布谈采样,就有了样本。

  • 随机现象
    在这里插入图片描述

  • 样本空间
    在这里插入图片描述
    在这里插入图片描述

  • 随机变量
    为了进行定量的数学处理,必须把随机现象的结果数量化,这就是引入随机变量的原因。
    随机变量既是变量也是函数。
    从变量的角度来看,随机变量是指在随机试验或者随机过程中可能取不同数值的一种变量,它的数值受随机因素影响,无法事先确切预知。
    在这里插入图片描述
    在这里插入图片描述
    从函数的角度来看,随机变量是定义在样本空间(随机试验所有可能结果组成的集合)上的一个实值函数。它将随机试验的所有可能结果(样本点)映射到实数集合上,每一个样本点对应一个实数值。随机变量的本质是对不确定事件结果的一种量化表示,使得原本非数值化的随机现象可以用数学语言来描述。
    在这里插入图片描述
    随机变量结合了变量的不确定性属性与函数的映射特性,它通过函数的方式将随机事件的结果量化,并通过概率论的语言来描述这些结果出现的可能性分布。

  • 取值空间
    随机变量的取值空间,也称为随机变量的定义域或者值域,是随机变量所有可能取值的集合。

用Fisher鸢尾属植物数据集(Iris dataset)(1936)举例。
随机现象是不同的鸢尾花有不同的长势。
样本点是一个个鸢尾花。
样本空间是样本点的集合。

随机变量是测量鸢尾花的花瓣长度(petal length)和花瓣宽度(petal width),取值是某个区间的实数,单位是cm。
随机变量是样本空间到取值空间的映射。在模式识别中,取值空间就是特征空间。
特征本身就是实数,如花瓣长度和花瓣宽度本身就是实数,所以在模式识别中,样本空间和特征空间的概念相同。
所以,样本空间就是取值空间,取值空间就是特征空间,样本空间就是特征空间。
该图是二维随机变量的样本空间,也是特征空间。
在这里插入图片描述

终于知道Duda模式分类中类别为什么用 ω \omega ω了,原来出处在统计学中的样本空间。
在这里插入图片描述

在这里插入图片描述

CAN长字节DM1报文是指在CAN总线上传输的长度超过8个字节的DM1报文。根据引用\[1\],当要传输的数据长度超过8个字节时,首先使用TPCM进行广播,广播内容包含即将传输报文的PGN、总的数据包长度等信息,然后使用TP.DT进行数据传输。相邻两个TP.DT之间的时间间隔是50ms到200ms。根据引用\[2\],当字节数大于8时,将会使用多帧传输参数组。根据引用\[3\],DM1报文是Diagnostic Message 1, Active Diagnostic Trouble Codes的缩写,用于点亮故障指示灯、红色停机灯等,并周期性播报控制器中处于激活状态的故障码。DM1报文的格式包括各个字节的定义,如故障指示灯、红色停机灯、琥珀色警告指示灯等。因此,CAN长字节DM1报文是指在CAN总线上传输的长度超过8个字节的DM1报文,用于传输更多的故障码信息。 #### 引用[.reference_title] - *1* [车载通信——J1939 DM1](https://blog.csdn.net/weixin_64064747/article/details/130193432)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [J1939广播DM1报文](https://blog.csdn.net/mengdeguodu_/article/details/108173263)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [J1939商用车在线诊断DM1报文](https://blog.csdn.net/traveller93/article/details/120735912)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值