傅里叶变换之间的关联——频率家族

因为研究滤波器设计,需要关联离散时间傅里叶变换 (DTFT)和离散傅里叶变换 (DFT),但是被冈萨雷斯坑的,前面的基础没有涉及离散时间傅里叶变换 (DTFT),各种想办法,才发现傅里叶变换的频率变量之间有着紧密的关联,一环扣一环。冈萨雷斯没有讲离散时间傅里叶变换 (DTFT),而其他傅里叶变换也是自己是自己。不建立知识点之间的关联的人只能说明他弱,站位低。

傅里叶级数 (FS)

  1. 连续时间傅里叶级数

    • 正变换
      X k = 1 T ∫ − T / 2 T / 2 x ( t ) e − j k Ω 0 t   d t X_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) {\rm e}^{-{\rm j}k\Omega_0 t} \, dt Xk=T1T/2T/2x(t)ejkΩ0tdt
    • 逆变换
      x ( t ) = ∑ k = − ∞ + ∞ X k e j k Ω 0 t x(t) = \sum_{k=-\infty}^{+\infty} X_k {\rm e}^{{\rm j}k\Omega_0 t} x(t)=k=+XkejkΩ0t
      其中 k = 0 , ± 1 , ± 2 , ⋯ k = 0, \pm 1, \pm 2, \cdots k=0,±1,±2, X k X_k Xk表示傅里叶复系数。
  2. 离散时间傅里叶级数

    • 正变换
      X ~ ( k ) = DFS [ x ~ ( n ) ] = ∑ n = 0 N − 1 x ~ ( n ) e − j 2 π N k n , k = 0 , ± 1 , ± 2 , ⋯ \tilde{X}(k) = \text{DFS}[\tilde{x}(n)] = \sum_{n=0}^{N-1} \tilde{x}(n) {\rm e}^{-{\rm j}\frac{2\pi}{N} kn}, \quad k = 0, \pm 1, \pm 2, \cdots X~(k)=DFS[x~(n)]=n=0N1x~(n)ejN2πkn,k=0,±1,±2,
    • 逆变换
      x ~ ( n ) = IDFS [ X ~ ( k ) ] = 1 N ∑ k = 0 N − 1 X ~ ( k ) e j 2 π N k n , n = 0 , ± 1 , ± 2 , ⋯ \tilde{x}(n) = \text{IDFS}[\tilde{X}(k)] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) {\rm e}^{{\rm j}\frac{2\pi}{N} kn}, \quad n = 0, \pm 1, \pm 2, \cdots x~(n)=IDFS[X~(k)]=N1k=0N1X~(k)ejN2πkn,n=0,±1,±2,

连续时间傅里叶变换 (CTFT)

  1. 正变换
    X ( ω ) = ∫ − ∞ ∞ x ( t ) e − j ω t   d t X(\omega) = \int_{-\infty}^{\infty} x(t) {\rm e}^{-{\rm j}\omega t} \, {\rm d}t X(ω)=x(t)ejωtdt
    将时域信号 x ( t ) x(t) x(t) 转换为频域信号 X ( ω ) X(\omega) X(ω)

  2. 逆变换
    x ( t ) = 1 2 π ∫ − ∞ ∞ X ( ω ) e j ω t   d ω x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) {\rm e}^{{\rm j}\omega t} \, d\omega x(t)=2π1X(ω)ejωtdω
    将频域信号 X ( ω ) X(\omega) X(ω) 转换回时域信号 x ( t ) x(t) x(t)

离散时间傅里叶变换 (DTFT)

  1. 正变换
    X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n X({\rm e}^{{\rm j}\omega}) = \sum_{n=-\infty}^{\infty} x[n] {\rm e}^{-{\rm j}\omega n} X(ejω)=n=x[n]ejωn
    将离散时间序列 x [ n ] x[n] x[n] 转换为频域信号 X ( e j ω ) X({\rm e}^{{\rm j}\omega}) X(ejω)

  2. 逆变换
    x [ n ] = 1 2 π ∫ − π π X ( e j ω ) e j ω n   d ω x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X({\rm e}^{{\rm j}\omega}) {\rm e}^{{\rm j}\omega n} \, d\omega x[n]=2π1ππX(ejω)ejωndω
    将频域信号 X ( e j ω ) X({\rm e}^{{\rm j}\omega}) X(ejω) 转换回离散时间序列 x [ n ] x[n] x[n]

离散傅里叶变换 (DFT)

  1. 正变换
    X [ k ] = ∑ n = 0 N − 1 x [ n ] e − j 2 π N k n , k = 0 , 1 , … , N − 1 X[k] = \sum_{n=0}^{N-1} x[n] {\rm e}^{-{\rm j} \frac{2\pi}{N} kn}, \quad k = 0, 1, \ldots, N-1 X[k]=n=0N1x[n]ejN2πkn,k=0,1,,N1
    将有限长离散时间序列 x [ n ] x[n] x[n] 转换为离散频域序列 X [ k ] X[k] X[k]

  2. 逆变换
    x [ n ] = 1 N ∑ k = 0 N − 1 X [ k ] e j 2 π N k n , n = 0 , 1 , … , N − 1 x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] {\rm e}^{{\rm j} \frac{2\pi}{N} kn}, \quad n = 0, 1, \ldots, N-1 x[n]=N1k=0N1X[k]ejN2πkn,n=0,1,,N1
    将离散频域序列 X [ k ] X[k] X[k] 转换回有限长离散时间序列 x [ n ] x[n] x[n]

频率概念定义适用的傅里叶变换相关公式
基本频率(基频)(Hz)信号周期性重复的最低频率,周期 T T T的倒数。连续傅里叶级数 f 0 = 1 T f_0 = \frac{1}{T} f0=T1
ω 0 = 2 π f 0 \omega_0 = 2\pi f_0 ω0=2πf0
谐波频率(Hz)基频的整数倍( n ⋅ f 0 n \cdot f_0 nf0 n ∈ N + n \in \mathbb{N}^+ nN+)。连续傅里叶级数 f = n ⋅ f 0 f = n \cdot f_0 f=nf0
ω n = n ⋅ ω 0 \omega_n = n \cdot \omega_0 ωn=nω0
角频率(rad/s)频率的角速度表示,单位为弧度/秒(rad/s),与频率的关系为 Ω = 2 π F \Omega = 2\pi F Ω=2πF连续傅里叶变换(CTFT) Ω = 2 π F \Omega = 2\pi F Ω=2πF
频率(Hz)单位时间内信号重复的次数,单位为赫兹(Hz)。连续傅里叶变换(CTFT) F = 1 T F = \frac{1}{T} F=T1
归一化角频率将角频率归一化到采样频率的范围, ω = Ω F s \omega = \frac{\Omega}{F_s} ω=FsΩ,范围 [ − π , π ] [-\pi, \pi] [π,π]离散时间傅里叶变换(DTFT) ω = Ω F s = 2 π Ω Ω s \omega = \frac{\Omega}{F_s}=2\pi\frac{\Omega}{\Omega_s} ω=FsΩ=2πΩsΩ
Ω = ω ⋅ F s \Omega = \omega \cdot F_s Ω=ωFs
归一化频率将频率归一化到采样频率的范围, f = F F s f = \frac{F}{F_s} f=FsF,范围 [ 0 , 0.5 ] [0, 0.5] [0,0.5]离散时间傅里叶变换(DTFT) f = F F s f = \frac{F}{F_s} f=FsF
F = f ⋅ F s F = f \cdot F_s F=fFs
频率序号( k k k离散傅里叶变换(DFT)中频率的索引, k = 0 , 1 , 2 , … , N − 1 k = 0, 1, 2, \dots, N-1 k=0,1,2,,N1离散傅里叶变换(DFT) f k = k N f_k = \frac{k}{N} fk=Nk
ω k = 2 π k N \omega_k = \frac{2\pi k}{N} ωk=N2πk
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值