因为研究滤波器设计,需要关联离散时间傅里叶变换 (DTFT)和离散傅里叶变换 (DFT),但是被冈萨雷斯坑的,前面的基础没有涉及离散时间傅里叶变换 (DTFT),各种想办法,才发现傅里叶变换的频率变量之间有着紧密的关联,一环扣一环。冈萨雷斯没有讲离散时间傅里叶变换 (DTFT),而其他傅里叶变换也是自己是自己。不建立知识点之间的关联的人只能说明他弱,站位低。
傅里叶级数 (FS)
-
连续时间傅里叶级数
- 正变换
X k = 1 T ∫ − T / 2 T / 2 x ( t ) e − j k Ω 0 t d t X_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) {\rm e}^{-{\rm j}k\Omega_0 t} \, dt Xk=T1∫−T/2T/2x(t)e−jkΩ0tdt - 逆变换
x ( t ) = ∑ k = − ∞ + ∞ X k e j k Ω 0 t x(t) = \sum_{k=-\infty}^{+\infty} X_k {\rm e}^{{\rm j}k\Omega_0 t} x(t)=k=−∞∑+∞XkejkΩ0t
其中 k = 0 , ± 1 , ± 2 , ⋯ k = 0, \pm 1, \pm 2, \cdots k=0,±1,±2,⋯, X k X_k Xk表示傅里叶复系数。
- 正变换
-
离散时间傅里叶级数
- 正变换
X ~ ( k ) = DFS [ x ~ ( n ) ] = ∑ n = 0 N − 1 x ~ ( n ) e − j 2 π N k n , k = 0 , ± 1 , ± 2 , ⋯ \tilde{X}(k) = \text{DFS}[\tilde{x}(n)] = \sum_{n=0}^{N-1} \tilde{x}(n) {\rm e}^{-{\rm j}\frac{2\pi}{N} kn}, \quad k = 0, \pm 1, \pm 2, \cdots X~(k)=DFS[x~(n)]=n=0∑N−1x~(n)e−jN2πkn,k=0,±1,±2,⋯ - 逆变换
x ~ ( n ) = IDFS [ X ~ ( k ) ] = 1 N ∑ k = 0 N − 1 X ~ ( k ) e j 2 π N k n , n = 0 , ± 1 , ± 2 , ⋯ \tilde{x}(n) = \text{IDFS}[\tilde{X}(k)] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) {\rm e}^{{\rm j}\frac{2\pi}{N} kn}, \quad n = 0, \pm 1, \pm 2, \cdots x~(n)=IDFS[X~(k)]=N1k=0∑N−1X~(k)ejN2πkn,n=0,±1,±2,⋯
- 正变换
连续时间傅里叶变换 (CTFT)
-
正变换
X ( ω ) = ∫ − ∞ ∞ x ( t ) e − j ω t d t X(\omega) = \int_{-\infty}^{\infty} x(t) {\rm e}^{-{\rm j}\omega t} \, {\rm d}t X(ω)=∫−∞∞x(t)e−jωtdt
将时域信号 x ( t ) x(t) x(t) 转换为频域信号 X ( ω ) X(\omega) X(ω)。 -
逆变换
x ( t ) = 1 2 π ∫ − ∞ ∞ X ( ω ) e j ω t d ω x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) {\rm e}^{{\rm j}\omega t} \, d\omega x(t)=2π1∫−∞∞X(ω)ejωtdω
将频域信号 X ( ω ) X(\omega) X(ω) 转换回时域信号 x ( t ) x(t) x(t)。
离散时间傅里叶变换 (DTFT)
-
正变换
X ( e j ω ) = ∑ n = − ∞ ∞ x [ n ] e − j ω n X({\rm e}^{{\rm j}\omega}) = \sum_{n=-\infty}^{\infty} x[n] {\rm e}^{-{\rm j}\omega n} X(ejω)=n=−∞∑∞x[n]e−jωn
将离散时间序列 x [ n ] x[n] x[n] 转换为频域信号 X ( e j ω ) X({\rm e}^{{\rm j}\omega}) X(ejω)。 -
逆变换
x [ n ] = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X({\rm e}^{{\rm j}\omega}) {\rm e}^{{\rm j}\omega n} \, d\omega x[n]=2π1∫−ππX(ejω)ejωndω
将频域信号 X ( e j ω ) X({\rm e}^{{\rm j}\omega}) X(ejω) 转换回离散时间序列 x [ n ] x[n] x[n]。
离散傅里叶变换 (DFT)
-
正变换
X [ k ] = ∑ n = 0 N − 1 x [ n ] e − j 2 π N k n , k = 0 , 1 , … , N − 1 X[k] = \sum_{n=0}^{N-1} x[n] {\rm e}^{-{\rm j} \frac{2\pi}{N} kn}, \quad k = 0, 1, \ldots, N-1 X[k]=n=0∑N−1x[n]e−jN2πkn,k=0,1,…,N−1
将有限长离散时间序列 x [ n ] x[n] x[n] 转换为离散频域序列 X [ k ] X[k] X[k]。 -
逆变换
x [ n ] = 1 N ∑ k = 0 N − 1 X [ k ] e j 2 π N k n , n = 0 , 1 , … , N − 1 x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] {\rm e}^{{\rm j} \frac{2\pi}{N} kn}, \quad n = 0, 1, \ldots, N-1 x[n]=N1k=0∑N−1X[k]ejN2πkn,n=0,1,…,N−1
将离散频域序列 X [ k ] X[k] X[k] 转换回有限长离散时间序列 x [ n ] x[n] x[n]。
频率概念 | 定义 | 适用的傅里叶变换 | 相关公式 |
---|---|---|---|
基本频率(基频)(Hz) | 信号周期性重复的最低频率,周期 T T T的倒数。 | 连续傅里叶级数 |
f
0
=
1
T
f_0 = \frac{1}{T}
f0=T1 ω 0 = 2 π f 0 \omega_0 = 2\pi f_0 ω0=2πf0 |
谐波频率(Hz) | 基频的整数倍( n ⋅ f 0 n \cdot f_0 n⋅f0, n ∈ N + n \in \mathbb{N}^+ n∈N+)。 | 连续傅里叶级数 |
f
=
n
⋅
f
0
f = n \cdot f_0
f=n⋅f0 ω n = n ⋅ ω 0 \omega_n = n \cdot \omega_0 ωn=n⋅ω0 |
角频率(rad/s) | 频率的角速度表示,单位为弧度/秒(rad/s),与频率的关系为 Ω = 2 π F \Omega = 2\pi F Ω=2πF。 | 连续傅里叶变换(CTFT) | Ω = 2 π F \Omega = 2\pi F Ω=2πF |
频率(Hz) | 单位时间内信号重复的次数,单位为赫兹(Hz)。 | 连续傅里叶变换(CTFT) | F = 1 T F = \frac{1}{T} F=T1 |
归一化角频率 | 将角频率归一化到采样频率的范围, ω = Ω F s \omega = \frac{\Omega}{F_s} ω=FsΩ,范围 [ − π , π ] [-\pi, \pi] [−π,π]。 | 离散时间傅里叶变换(DTFT) |
ω
=
Ω
F
s
=
2
π
Ω
Ω
s
\omega = \frac{\Omega}{F_s}=2\pi\frac{\Omega}{\Omega_s}
ω=FsΩ=2πΩsΩ Ω = ω ⋅ F s \Omega = \omega \cdot F_s Ω=ω⋅Fs |
归一化频率 | 将频率归一化到采样频率的范围, f = F F s f = \frac{F}{F_s} f=FsF,范围 [ 0 , 0.5 ] [0, 0.5] [0,0.5]。 | 离散时间傅里叶变换(DTFT) |
f
=
F
F
s
f = \frac{F}{F_s}
f=FsF F = f ⋅ F s F = f \cdot F_s F=f⋅Fs |
频率序号( k k k) | 离散傅里叶变换(DFT)中频率的索引, k = 0 , 1 , 2 , … , N − 1 k = 0, 1, 2, \dots, N-1 k=0,1,2,…,N−1。 | 离散傅里叶变换(DFT) |
f
k
=
k
N
f_k = \frac{k}{N}
fk=Nk ω k = 2 π k N \omega_k = \frac{2\pi k}{N} ωk=N2πk |