1. 各种矩阵与行列式
这篇文章太好了,直接查看 使用Markdown写矩阵
1.1 字母矩阵
写出如下面所示的矩阵等式
D
(
q
)
=
[
p
1
+
p
2
+
2
p
3
c
o
s
q
2
p
2
+
p
3
c
o
s
q
2
p
2
+
p
3
c
o
s
q
2
p
2
]
D(q) = \begin{bmatrix} p_1+p_2+2p_3cosq_{2} & p_2+p_3cosq_2\\ p_2+p_3cosq_2 & p_2 \end{bmatrix}
D(q)=[p1+p2+2p3cosq2p2+p3cosq2p2+p3cosq2p2]
C
(
q
,
q
˙
)
=
[
−
p
3
q
˙
2
s
i
n
q
2
−
p
3
(
q
˙
1
+
q
˙
2
)
s
i
n
q
2
p
3
q
˙
1
s
i
n
q
2
0
]
C(q,\dot q) = \begin{bmatrix} -p_3\dot q_2sinq_2 &-p_3(\dot q_1+\dot q_2)sinq_2 \\ p_3\dot q_1sinq_2 & 0 \end{bmatrix}
C(q,q˙)=[−p3q˙2sinq2p3q˙1sinq2−p3(q˙1+q˙2)sinq20]
写出上面矩阵等式的格式如下:
$$
D(q) =
\begin{bmatrix}
p_1+p_2+2p_3cosq_{2} & p_2+p_3cosq_2\\
p_2+p_3cosq_2 & p_2
\end{bmatrix}
$$
$$
C(q,\dot q) =
\begin{bmatrix}
-p_3\dot q_2sinq_2 &-p_3(\dot q_1+\dot q_2)sinq_2 \\
p_3\dot q_1sinq_2 & 0
\end{bmatrix}
$$
1.2 省略号
( a 11 … a 1 n ⋮ ⋱ ⋮ a m 1 … a m n ) \begin{pmatrix} a_{11} & \dots & a_{1n}\\ \vdots & \ddots & \vdots\\ a_{m1} & \dots & a_{mn} \end{pmatrix} ⎝⎜⎛a11⋮am1…⋱…a1n⋮amn⎠⎟⎞
代码:
$$
\begin{pmatrix}
a_{11} & \dots & a_{1n}\\
\vdots & \ddots & \vdots\\
a_{m1} & \dots & a_{mn}
\end{pmatrix}
$$
1.3 行列式
∣
1
0
0
−
1
∣
\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}
∣∣∣∣100−1∣∣∣∣
对应代码:
$$
\begin{vmatrix}
1 & 0 \\
0 & -1 \end{vmatrix}
$$
∥
1
0
0
−
1
∥
\begin{Vmatrix} 1 & 0 \\ 0 & -1 \end{Vmatrix}
∥∥∥∥100−1∥∥∥∥
对应代码:
$$
\begin{Vmatrix}
1 & 0 \\
0 & -1 \end{Vmatrix}
$$
2. 空格
空格格式为:
或者 
3. 公式
3.1 块级公式
(1)
D
(
q
)
q
¨
+
C
(
q
,
q
˙
)
q
˙
=
τ
D(q) \ddot{q} + C(q,\dot {q}) \dot {q} = \tau\tag{1}
D(q)q¨+C(q,q˙)q˙=τ(1)
其格式为:
$$D(q) \ddot{q} + C(q,\dot {q}) \dot {q} = \tau\tag{1}$$
3.2 行内公式
在文本中插入公式:
D
(
q
)
q
¨
+
C
(
q
,
q
˙
)
q
˙
=
τ
D(q) \ddot{q}+ C(q,\dot {q})\dot {q}= \tau
D(q)q¨+C(q,q˙)q˙=τ 插入这个公式的格式为:
$D(q) \ddot{q}+ C(q,\dot {q})\dot {q}= \tau$
- 要注意当插入公式的时候,
$$...$$或者$...$省略号中的内容如果在正常文本中显示需要$符号的,比如$\dot x$则不再需要$。
4. 方程组
- 效果展示:
{ 方 程 式 一 方 程 式 二 方 程 式 三 \begin{cases} 方程式一\\ 方程式二\\ 方程式三\\ \end{cases} ⎩⎪⎨⎪⎧方程式一方程式二方程式三 - 写入格式如下:
$$\begin{cases} 方程式一\\ 方程式二\\ 方程式三\\ \end{cases} $$
5. 参考文献
Markdown添加空格效果
Markdown下LaTeX公式、编号、对齐
在Markdown中输入数学公式(MathJax)
1724

被折叠的 条评论
为什么被折叠?



