Java OCR tesseract 图像智能字符识别技术 Java代码实现

接着上一篇OCR所说的,上一篇给大家介绍了tesseract 在命令行的简单用法,当然了要继承到我们的程序中,还是需要代码实现的,下面给大家分享下java实现的例子。


拿代码扫描上面的图片,然后输出结果。主要思想就是利用Java调用系统任务。

下面是核心代码:

  1. package com.zhy.test;  
  2.   
  3. import java.io.BufferedReader;  
  4.   
  5. import java.io.File;  
  6. import java.io.FileInputStream;  
  7. import java.io.InputStreamReader;  
  8. import java.util.ArrayList;  
  9. import java.util.List;  
  10.   
  11. import org.jdesktop.swingx.util.OS;  
  12.   
  13. public class OCRHelper  
  14. {  
  15.     private final String LANG_OPTION = “-l”;  
  16.     private final String EOL = System.getProperty(“line.separator”);  
  17.     /** 
  18.      * 文件位置我防止在,项目同一路径 
  19.      */  
  20.     private String tessPath = new File(“tesseract”).getAbsolutePath();  
  21.   
  22.     /** 
  23.      * @param imageFile 
  24.      *            传入的图像文件 
  25.      * @param imageFormat 
  26.      *            传入的图像格式 
  27.      * @return 识别后的字符串 
  28.      */  
  29.     public String recognizeText(File imageFile) throws Exception  
  30.     {  
  31.         /** 
  32.          * 设置输出文件的保存的文件目录 
  33.          */  
  34.         File outputFile = new File(imageFile.getParentFile(), “output”);  
  35.   
  36.         StringBuffer strB = new StringBuffer();  
  37.         List<String> cmd = new ArrayList<String>();  
  38.         if (OS.isWindowsXP())  
  39.         {  
  40.             cmd.add(tessPath + ”\\tesseract”);  
  41.         } else if (OS.isLinux())  
  42.         {  
  43.             cmd.add(”tesseract”);  
  44.         } else  
  45.         {  
  46.             cmd.add(tessPath + ”\\tesseract”);  
  47.         }  
  48.         cmd.add(”“);  
  49.         cmd.add(outputFile.getName());  
  50.         cmd.add(LANG_OPTION);  
  51. //      cmd.add(“chi_sim”);  
  52.         cmd.add(”eng”);  
  53.   
  54.         ProcessBuilder pb = new ProcessBuilder();  
  55.         /** 
  56.          *Sets this process builder’s working directory. 
  57.          */  
  58.         pb.directory(imageFile.getParentFile());  
  59.         cmd.set(1, imageFile.getName());  
  60.         pb.command(cmd);  
  61.         pb.redirectErrorStream(true);  
  62.         Process process = pb.start();  
  63.         // tesseract.exe 1.jpg 1 -l chi_sim  
  64.         // Runtime.getRuntime().exec(“tesseract.exe 1.jpg 1 -l chi_sim”);  
  65.         /** 
  66.          * the exit value of the process. By convention, 0 indicates normal 
  67.          * termination. 
  68.          */  
  69. //      System.out.println(cmd.toString());  
  70.         int w = process.waitFor();  
  71.         if (w == 0)// 0代表正常退出  
  72.         {  
  73.             BufferedReader in = new BufferedReader(new InputStreamReader(  
  74.                     new FileInputStream(outputFile.getAbsolutePath() + “.txt”),  
  75.                     ”UTF-8”));  
  76.             String str;  
  77.   
  78.             while ((str = in.readLine()) != null)  
  79.             {  
  80.                 strB.append(str).append(EOL);  
  81.             }  
  82.             in.close();  
  83.         } else  
  84.         {  
  85.             String msg;  
  86.             switch (w)  
  87.             {  
  88.             case 1:  
  89.                 msg = ”Errors accessing files. There may be spaces in your image’s filename.”;  
  90.                 break;  
  91.             case 29:  
  92.                 msg = ”Cannot recognize the image or its selected region.”;  
  93.                 break;  
  94.             case 31:  
  95.                 msg = ”Unsupported image format.”;  
  96.                 break;  
  97.             default:  
  98.                 msg = ”Errors occurred.”;  
  99.             }  
  100.             throw new RuntimeException(msg);  
  101.         }  
  102.         new File(outputFile.getAbsolutePath() + “.txt”).delete();  
  103.         return strB.toString().replaceAll(“\\s*”“”);  
  104.     }  
  105. }  
package com.zhy.test;

import java.io.BufferedReader;

import java.io.File;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;

import org.jdesktop.swingx.util.OS;

public class OCRHelper
{
    private final String LANG_OPTION = "-l";
    private final String EOL = System.getProperty("line.separator");
    /**
     * 文件位置我防止在,项目同一路径
     */
    private String tessPath = new File("tesseract").getAbsolutePath();

    /**
     * @param imageFile
     *            传入的图像文件
     * @param imageFormat
     *            传入的图像格式
     * @return 识别后的字符串
     */
    public String recognizeText(File imageFile) throws Exception
    {
        /**
         * 设置输出文件的保存的文件目录
         */
        File outputFile = new File(imageFile.getParentFile(), "output");

        StringBuffer strB = new StringBuffer();
        List<String> cmd = new ArrayList<String>();
        if (OS.isWindowsXP())
        {
            cmd.add(tessPath + "\\tesseract");
        } else if (OS.isLinux())
        {
            cmd.add("tesseract");
        } else
        {
            cmd.add(tessPath + "\\tesseract");
        }
        cmd.add("");
        cmd.add(outputFile.getName());
        cmd.add(LANG_OPTION);
//      cmd.add("chi_sim");
        cmd.add("eng");

        ProcessBuilder pb = new ProcessBuilder();
        /**
         *Sets this process builder's working directory.
         */
        pb.directory(imageFile.getParentFile());
        cmd.set(1, imageFile.getName());
        pb.command(cmd);
        pb.redirectErrorStream(true);
        Process process = pb.start();
        // tesseract.exe 1.jpg 1 -l chi_sim
        // Runtime.getRuntime().exec("tesseract.exe 1.jpg 1 -l chi_sim");
        /**
         * the exit value of the process. By convention, 0 indicates normal
         * termination.
         */
//      System.out.println(cmd.toString());
        int w = process.waitFor();
        if (w == 0)// 0代表正常退出
        {
            BufferedReader in = new BufferedReader(new InputStreamReader(
                    new FileInputStream(outputFile.getAbsolutePath() + ".txt"),
                    "UTF-8"));
            String str;

            while ((str = in.readLine()) != null)
            {
                strB.append(str).append(EOL);
            }
            in.close();
        } else
        {
            String msg;
            switch (w)
            {
            case 1:
                msg = "Errors accessing files. There may be spaces in your image's filename.";
                break;
            case 29:
                msg = "Cannot recognize the image or its selected region.";
                break;
            case 31:
                msg = "Unsupported image format.";
                break;
            default:
                msg = "Errors occurred.";
            }
            throw new RuntimeException(msg);
        }
        new File(outputFile.getAbsolutePath() + ".txt").delete();
        return strB.toString().replaceAll("\\s*", "");
    }
}
代码很简单,中间那部分ProcessBuilder其实就类似Runtime.getRuntime().exec(“tesseract.exe 1.jpg 1 -l chi_sim”),大家不习惯的可以使用Runtime。

测试代码:

  1. package com.zhy.test;  
  2.   
  3. import java.io.File;  
  4.   
  5. public class Test  
  6. {  
  7.     public static void main(String[] args)  
  8.     {  
  9.         try  
  10.         {  
  11.               
  12.             File testDataDir = new File(“testdata”);  
  13.             System.out.println(testDataDir.listFiles().length);  
  14.             int i = 0 ;   
  15.             for(File file :testDataDir.listFiles())  
  16.             {  
  17.                 i++ ;  
  18.                 String recognizeText = new OCRHelper().recognizeText(file);  
  19.                 System.out.print(recognizeText+”\t”);  
  20.   
  21.                 if( i % 5  == 0 )  
  22.                 {  
  23.                     System.out.println();  
  24.                 }  
  25.             }  
  26.               
  27.         } catch (Exception e)  
  28.         {  
  29.             e.printStackTrace();  
  30.         }  
  31.   
  32.     }  
  33. }  
package com.zhy.test;

import java.io.File;

public class Test
{
    public static void main(String[] args)
    {
        try
        {

            File testDataDir = new File("testdata");
            System.out.println(testDataDir.listFiles().length);
            int i = 0 ; 
            for(File file :testDataDir.listFiles())
            {
                i++ ;
                String recognizeText = new OCRHelper().recognizeText(file);
                System.out.print(recognizeText+"\t");

                if( i % 5  == 0 )
                {
                    System.out.println();
                }
            }

        } catch (Exception e)
        {
            e.printStackTrace();
        }

    }
}

输出结果:


对比第一张图片,是不是很完美~哈哈 ,当然了如果你只需要实现验证码的读写,那么上面就足够了。下面继续普及图像处理的知识。



——————————————————————-我的分割线——————————————————————–

当然了,有时候图片被扭曲或者模糊的很厉害,很不容易识别,所以下面我给大家介绍一个去噪的辅助类,绝对碉堡了,先看下效果图。


来张特写:


一个类,不依赖任何jar,把图像中的干扰线消灭了,是不是很给力,然后再拿这样的图片去识别,会不会效果更好呢,嘿嘿,大家自己实验~

代码:

  1. package com.zhy.test;  
  2.   
  3. import java.awt.Color;  
  4. import java.awt.image.BufferedImage;  
  5. import java.io.File;  
  6. import java.io.IOException;  
  7.   
  8. import javax.imageio.ImageIO;  
  9.   
  10. public class ClearImageHelper  
  11. {  
  12.   
  13.     public static void main(String[] args) throws IOException  
  14.     {  
  15.   
  16.           
  17.         File testDataDir = new File(“testdata”);  
  18.         final String destDir = testDataDir.getAbsolutePath()+“/tmp”;  
  19.         for (File file : testDataDir.listFiles())  
  20.         {  
  21.             cleanImage(file, destDir);  
  22.         }  
  23.   
  24.     }  
  25.   
  26.     /** 
  27.      *  
  28.      * @param sfile 
  29.      *            需要去噪的图像 
  30.      * @param destDir 
  31.      *            去噪后的图像保存地址 
  32.      * @throws IOException 
  33.      */  
  34.     public static void cleanImage(File sfile, String destDir)  
  35.             throws IOException  
  36.     {  
  37.         File destF = new File(destDir);  
  38.         if (!destF.exists())  
  39.         {  
  40.             destF.mkdirs();  
  41.         }  
  42.   
  43.         BufferedImage bufferedImage = ImageIO.read(sfile);  
  44.         int h = bufferedImage.getHeight();  
  45.         int w = bufferedImage.getWidth();  
  46.   
  47.         // 灰度化  
  48.         int[][] gray = new int[w][h];  
  49.         for (int x = 0; x < w; x++)  
  50.         {  
  51.             for (int y = 0; y < h; y++)  
  52.             {  
  53.                 int argb = bufferedImage.getRGB(x, y);  
  54.                 // 图像加亮(调整亮度识别率非常高)  
  55.                 int r = (int) (((argb >> 16) & 0xFF) * 1.1 + 30);  
  56.                 int g = (int) (((argb >> 8) & 0xFF) * 1.1 + 30);  
  57.                 int b = (int) (((argb >> 0) & 0xFF) * 1.1 + 30);  
  58.                 if (r >= 255)  
  59.                 {  
  60.                     r = 255;  
  61.                 }  
  62.                 if (g >= 255)  
  63.                 {  
  64.                     g = 255;  
  65.                 }  
  66.                 if (b >= 255)  
  67.                 {  
  68.                     b = 255;  
  69.                 }  
  70.                 gray[x][y] = (int) Math  
  71.                         .pow((Math.pow(r, 2.2) * 0.2973 + Math.pow(g, 2.2)  
  72.                                 * 0.6274 + Math.pow(b, 2.2) * 0.0753), 1 / 2.2);  
  73.             }  
  74.         }  
  75.   
  76.         // 二值化  
  77.         int threshold = ostu(gray, w, h);  
  78.         BufferedImage binaryBufferedImage = new BufferedImage(w, h,  
  79.                 BufferedImage.TYPE_BYTE_BINARY);  
  80.         for (int x = 0; x < w; x++)  
  81.         {  
  82.             for (int y = 0; y < h; y++)  
  83.             {  
  84.                 if (gray[x][y] > threshold)  
  85.                 {  
  86.                     gray[x][y] |= 0x00FFFF;  
  87.                 } else  
  88.                 {  
  89.                     gray[x][y] &= 0xFF0000;  
  90.                 }  
  91.                 binaryBufferedImage.setRGB(x, y, gray[x][y]);  
  92.             }  
  93.         }  
  94.   
  95.         // 矩阵打印  
  96.         for (int y = 0; y < h; y++)  
  97.         {  
  98.             for (int x = 0; x < w; x++)  
  99.             {  
  100.                 if (isBlack(binaryBufferedImage.getRGB(x, y)))  
  101.                 {  
  102.                     System.out.print(”*”);  
  103.                 } else  
  104.                 {  
  105.                     System.out.print(” ”);  
  106.                 }  
  107.             }  
  108.             System.out.println();  
  109.         }  
  110.   
  111.         ImageIO.write(binaryBufferedImage, ”jpg”new File(destDir, sfile  
  112.                 .getName()));  
  113.     }  
  114.   
  115.     public static boolean isBlack(int colorInt)  
  116.     {  
  117.         Color color = new Color(colorInt);  
  118.         if (color.getRed() + color.getGreen() + color.getBlue() <= 300)  
  119.         {  
  120.             return true;  
  121.         }  
  122.         return false;  
  123.     }  
  124.   
  125.     public static boolean isWhite(int colorInt)  
  126.     {  
  127.         Color color = new Color(colorInt);  
  128.         if (color.getRed() + color.getGreen() + color.getBlue() > 300)  
  129.         {  
  130.             return true;  
  131.         }  
  132.         return false;  
  133.     }  
  134.   
  135.     public static int isBlackOrWhite(int colorInt)  
  136.     {  
  137.         if (getColorBright(colorInt) < 30 || getColorBright(colorInt) > 730)  
  138.         {  
  139.             return 1;  
  140.         }  
  141.         return 0;  
  142.     }  
  143.   
  144.     public static int getColorBright(int colorInt)  
  145.     {  
  146.         Color color = new Color(colorInt);  
  147.         return color.getRed() + color.getGreen() + color.getBlue();  
  148.     }  
  149.   
  150.     public static int ostu(int[][] gray, int w, int h)  
  151.     {  
  152.         int[] histData = new int[w * h];  
  153.         // Calculate histogram  
  154.         for (int x = 0; x < w; x++)  
  155.         {  
  156.             for (int y = 0; y < h; y++)  
  157.             {  
  158.                 int red = 0xFF & gray[x][y];  
  159.                 histData[red]++;  
  160.             }  
  161.         }  
  162.   
  163.         // Total number of pixels  
  164.         int total = w * h;  
  165.   
  166.         float sum = 0;  
  167.         for (int t = 0; t < 256; t++)  
  168.             sum += t * histData[t];  
  169.   
  170.         float sumB = 0;  
  171.         int wB = 0;  
  172.         int wF = 0;  
  173.   
  174.         float varMax = 0;  
  175.         int threshold = 0;  
  176.   
  177.         for (int t = 0; t < 256; t++)  
  178.         {  
  179.             wB += histData[t]; // Weight Background  
  180.             if (wB == 0)  
  181.                 continue;  
  182.   
  183.             wF = total - wB; // Weight Foreground  
  184.             if (wF == 0)  
  185.                 break;  
  186.   
  187.             sumB += (float) (t * histData[t]);  
  188.   
  189.             float mB = sumB / wB; // Mean Background  
  190.             float mF = (sum - sumB) / wF; // Mean Foreground  
  191.   
  192.             // Calculate Between Class Variance  
  193.             float varBetween = (float) wB * (float) wF * (mB - mF) * (mB - mF);  
  194.   
  195.             // Check if new maximum found  
  196.             if (varBetween > varMax)  
  197.             {  
  198.                 varMax = varBetween;  
  199.                 threshold = t;  
  200.             }  
  201.         }  
  202.   
  203.         return threshold;  
  204.     }  
  205. }  
package com.zhy.test;

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;

import javax.imageio.ImageIO;

public class ClearImageHelper
{

    public static void main(String[] args) throws IOException
    {


        File testDataDir = new File("testdata");
        final String destDir = testDataDir.getAbsolutePath()+"/tmp";
        for (File file : testDataDir.listFiles())
        {
            cleanImage(file, destDir);
        }

    }

    /**
     * 
     * @param sfile
     *            需要去噪的图像
     * @param destDir
     *            去噪后的图像保存地址
     * @throws IOException
     */
    public static void cleanImage(File sfile, String destDir)
            throws IOException
    {
        File destF = new File(destDir);
        if (!destF.exists())
        {
            destF.mkdirs();
        }

        BufferedImage bufferedImage = ImageIO.read(sfile);
        int h = bufferedImage.getHeight();
        int w = bufferedImage.getWidth();

        // 灰度化
        int[][] gray = new int[w][h];
        for (int x = 0; x < w; x++)
        {
            for (int y = 0; y < h; y++)
            {
                int argb = bufferedImage.getRGB(x, y);
                // 图像加亮(调整亮度识别率非常高)
                int r = (int) (((argb >> 16) & 0xFF) * 1.1 + 30);
                int g = (int) (((argb >> 8) & 0xFF) * 1.1 + 30);
                int b = (int) (((argb >> 0) & 0xFF) * 1.1 + 30);
                if (r >= 255)
                {
                    r = 255;
                }
                if (g >= 255)
                {
                    g = 255;
                }
                if (b >= 255)
                {
                    b = 255;
                }
                gray[x][y] = (int) Math
                        .pow((Math.pow(r, 2.2) * 0.2973 + Math.pow(g, 2.2)
                                * 0.6274 + Math.pow(b, 2.2) * 0.0753), 1 / 2.2);
            }
        }

        // 二值化
        int threshold = ostu(gray, w, h);
        BufferedImage binaryBufferedImage = new BufferedImage(w, h,
                BufferedImage.TYPE_BYTE_BINARY);
        for (int x = 0; x < w; x++)
        {
            for (int y = 0; y < h; y++)
            {
                if (gray[x][y] > threshold)
                {
                    gray[x][y] |= 0x00FFFF;
                } else
                {
                    gray[x][y] &= 0xFF0000;
                }
                binaryBufferedImage.setRGB(x, y, gray[x][y]);
            }
        }

        // 矩阵打印
        for (int y = 0; y < h; y++)
        {
            for (int x = 0; x < w; x++)
            {
                if (isBlack(binaryBufferedImage.getRGB(x, y)))
                {
                    System.out.print("*");
                } else
                {
                    System.out.print(" ");
                }
            }
            System.out.println();
        }

        ImageIO.write(binaryBufferedImage, "jpg", new File(destDir, sfile
                .getName()));
    }

    public static boolean isBlack(int colorInt)
    {
        Color color = new Color(colorInt);
        if (color.getRed() + color.getGreen() + color.getBlue() <= 300)
        {
            return true;
        }
        return false;
    }

    public static boolean isWhite(int colorInt)
    {
        Color color = new Color(colorInt);
        if (color.getRed() + color.getGreen() + color.getBlue() > 300)
        {
            return true;
        }
        return false;
    }

    public static int isBlackOrWhite(int colorInt)
    {
        if (getColorBright(colorInt) < 30 || getColorBright(colorInt) > 730)
        {
            return 1;
        }
        return 0;
    }

    public static int getColorBright(int colorInt)
    {
        Color color = new Color(colorInt);
        return color.getRed() + color.getGreen() + color.getBlue();
    }

    public static int ostu(int[][] gray, int w, int h)
    {
        int[] histData = new int[w * h];
        // Calculate histogram
        for (int x = 0; x < w; x++)
        {
            for (int y = 0; y < h; y++)
            {
                int red = 0xFF & gray[x][y];
                histData[red]++;
            }
        }

        // Total number of pixels
        int total = w * h;

        float sum = 0;
        for (int t = 0; t < 256; t++)
            sum += t * histData[t];

        float sumB = 0;
        int wB = 0;
        int wF = 0;

        float varMax = 0;
        int threshold = 0;

        for (int t = 0; t < 256; t++)
        {
            wB += histData[t]; // Weight Background
            if (wB == 0)
                continue;

            wF = total - wB; // Weight Foreground
            if (wF == 0)
                break;

            sumB += (float) (t * histData[t]);

            float mB = sumB / wB; // Mean Background
            float mF = (sum - sumB) / wF; // Mean Foreground

            // Calculate Between Class Variance
            float varBetween = (float) wB * (float) wF * (mB - mF) * (mB - mF);

            // Check if new maximum found
            if (varBetween > varMax)
            {
                varMax = varBetween;
                threshold = t;
            }
        }

        return threshold;
    }
}


好了,就到这里。如果这篇文章对你有用,赞一个吧~





转自:http://blog.csdn.net/lmj623565791/article/details/23960391

已标记关键词 清除标记
相关推荐
<p> <strong><span style="background-color:#FFFFFF;color:#E53333;font-size:24px;">本页面购买不发书!!!仅为视频课购买!!!</span></strong> </p> <p> <strong><span style="color:#E53333;font-size:18px;">请务必到</span></strong><a href="https://edu.csdn.net/bundled/detail/49?utm_source=banner"><strong><span style="color:#E53333;font-size:18px;">https://edu.csdn.net/bundled/detail/49</span></strong></a><strong><span style="color:#E53333;font-size:18px;">下单购买课+书。</span></strong> </p> <p> <span style="font-size:14px;">本页面,仅为观看视频页面,如需一并购买图书,请</span><span style="font-size:14px;">务必到</span><a href="https://edu.csdn.net/bundled/detail/49?utm_source=banner"><span style="font-size:14px;">https://edu.csdn.net/bundled/detail/49</span></a><span style="font-size:14px;">下单购买课程+图书!!!</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;">疯狂Python精讲课程覆盖《疯狂Python讲义》全书的主体内容。</span> </p> <span style="font-size:14px;">内容包括Python基本数据类型、Python列表、元组和字典、流程控制、函数式编程、面向对象编程、文件读写、异常控制、数据库编程、并发编程与网络编程、数据可视化分析、Python爬虫等。</span><br /> <span style="font-size:14px;"> 全套课程从Python基础开始介绍,逐步步入当前就业热点。将会带着大家从Python基础语法开始学习,为每个知识点都提供对应的代码实操、代码练习,逐步过渡到文件IO、数据库编程、并发编程、网络编程、数据分 析和网络爬虫等内容,本课程会从小案例起,至爬虫、数据分析案例终、以Python知识体系作为内在逻辑,以Python案例作为学习方式,最终达到“知行合一”。</span><br />
<p> <strong><span style="font-size:20px;color:#FF0000;">本课程主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者</span></strong> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">1. 包含:<span style="color:#FFFF00;background-color:#FF0000;">项目源码、</span><span style="color:#FFFF00;background-color:#FF0000;">项目文档、数据库脚本、软件工具</span>等所有资料</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">2. 手把手的带你从零开始部署运行本套系统</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">3. 该项目附带的源码资料可作为毕设使用</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">4. 提供技术答疑和远程协助指导</span></strong></span><strong><span style="font-size:18px;"></span></strong> </p> <p> <br /> </p> <p> <span style="font-size:18px;"><strong>项目运行截图:</strong></span> </p> <p> <strong><span style="font-size:18px;">1)系统登陆界面</span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015433522.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">2)学生模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015575966.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">3)教师模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016127898.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">4)系统管理员</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016281177.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016369884.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">更多Java毕设项目请关注我的毕设系列课程 <a href="https://edu.csdn.net/lecturer/2104">https://edu.csdn.net/lecturer/2104</a></span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p>
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页