bzoj 2120 数颜色 (树状数组套主席树)

题意:

给n个数,q次操作,每次操作是修改某个数或者查询一段区间内不同数的个数。


思路:

如果不带修改,对每个数维护一个pre值,表示这个数上次出现的位置,每次询问就是查询[l,r]内pre小于等于l-1的数的个数,弄个主席树很容易就nlogn搞出来。

考虑带修改,假设为a[x] = y,可以看出来只会影响最多3个数的pre值.(1) pre[j] = x的数j,pre[j] = pre[x]; (2) a[k] = y 并且 k > x 最小的k,pre[k] = x;(3) pre[x] = pre[k]。

如果对每种颜色都维护一个set,表示这个颜色出现的下标,那么lower_bound一下很容易就可以找出j和k。

所以,现在只需要考虑对pre值的修改。

对于pre[x]=y,就是把第x到第n颗主席树pre[x]的位置-1,y的位置+1。用树状数组来维护不带修改的主席树,就可以实现修改操作。时间和空间复杂度都是nlognlogn。

#include <bits/stdc++.h>
using namespace std;

#define N 30030
#define M 1000030
#define LL long long
#define md ((ll + rr) >> 1)

int n, q, a[N];

struct ope {
	int t, x, y;
}p[N];
int san[N], scnt;
int ch[N * 20 * 20][2], cnt[N * 20 * 20], tot;

int rt[N];
set<int> st[N];
set<int>::iterator it, it2;

int pre[N], vis[N];
int haxi(int x) {
	return lower_bound(san + 1, san + scnt + 1, x) - san;
}
int update(int i, int x, int v, int ll, int rr) {
	int k = ++tot;
	ch[k][0] = ch[i][0];
	ch[k][1] = ch[i][1];
	cnt[k] = cnt[i] + v;
	if(ll == rr) return k;
	if(x <= md) ch[k][0] = update(ch[i][0], x, v, ll, md);
	else ch[k][1] = update(ch[i][1], x, v, md + 1, rr);
	return k;
}
int query(int i, int l, int r, int ll, int rr) {
	if(ll == l && rr == r) return cnt[i];
	if(r <= md) return query(ch[i][0], l, r, ll, md);
	if(l > md) return query(ch[i][1], l, r, md + 1, rr);
	return query(ch[i][0], l, md, ll, md) + query(ch[i][1], md + 1, r, md + 1, rr);
}

void mdf(int x, int p, int v) {
	while(x <= n) {
		rt[x] = update(rt[x], p, v, 0, n);
		x += x & -x;
	}
}
int qry(int x, int p) {
	int ret = 0;
	while(x) {
		ret += query(rt[x], 0, p, 0, n);
		x -= x & -x;
	}
	return ret;
}
int main() {

	scanf("%d%d", &n, &q);

	for(int i = 1; i <= n; ++i) {
		scanf("%d", &a[i]);
		san[++scnt] = a[i];
	}
	for(int i = 1; i <= q; ++i) {
		char op[3];
		scanf("%s%d%d", op, &p[i].x, &p[i].y);
		if(op[0] == 'Q') p[i].t = 1;
		else p[i].t = 0;
		if(p[i].t == 0) san[++scnt] = p[i].y;
	}
	sort(san + 1, san + scnt + 1);
	scnt = unique(san + 1, san + scnt + 1) - san - 1;
	for(int i = 1; i <= n; ++i) a[i] = haxi(a[i]);
	for(int i = 1; i <= q; ++i) {
		if(p[i].t == 0) p[i].y = haxi(p[i].y);
	}
	for(int i = 1; i <= scnt; ++i) st[i].insert(0);
	for(int i = 1; i <= n; ++i) {
		st[a[i]].insert(i);
		pre[i] = vis[a[i]];
		vis[a[i]] = i;
	}
	for(int i = 1; i <= scnt; ++i) st[i].insert(n + 1);
	for(int i = 1; i <= n; ++i) {
		mdf(i, pre[i], 1);
	}
	for(int i = 1; i <= q; ++i) {
		int x = p[i].x, y = p[i].y;
		if(p[i].t == 0) {
			if(a[x] == y) continue;
			it = st[a[x]].lower_bound(x);
			++it;
			if((*it) != n + 1) {
				mdf(*it, pre[*it], -1);
				pre[*it] = pre[x];
				mdf(*it, pre[x], 1);
			}
			st[a[x]].erase(x);
			it = st[y].lower_bound(x);
			int v = pre[*it];
			if((*it) != n + 1) {
				mdf(*it, pre[*it], -1);
				pre[*it] = x;
				mdf(*it, x, 1);
			}
			else {
			   --it;
			   v = *it;
			}

			mdf(x, pre[x], -1);
			pre[x] = v;
			mdf(x, pre[x], 1);
			st[y].insert(x);
			a[x] = y;
		}
		else {
			int ans = qry(y, x - 1) - qry(x - 1, x - 1);
			printf("%d\n", ans);
		}
	}
	return 0;
}



展开阅读全文

没有更多推荐了,返回首页