hive 底层模块实现-group by

准备数据

SELECT uid, SUM(COUNT) FROM logs GROUP BY uid;
hive> SELECT * FROM logs;
a   苹果  5
a   橙子  3
a      苹果   2
b   烧鸡  1

hive> SELECT uid, SUM(COUNT) FROM logs GROUP BY uid;
a   10
b   1

计算过程

hive group by cal
默认设置了hive.map.aggr=true,所以会在mapper端先group by一次,最后再把结果merge起来,为了减少reducer处理的数据量。注意看explain的mode是不一样的。mapper是hash,reducer是mergepartial。如果把hive.map.aggr=false,那将groupby放到reducer才做,他的mode是complete.

Operator

hive group by op

Explain

hive> explain SELECT uid, sum(count) FROM logs group by uid;
OK
ABSTRACT SYNTAX TREE:
  (TOK_QUERY (TOK_FROM (TOK_TABREF (TOK_TABNAME logs))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (TOK_TABLE_OR_COL uid)) (TOK_SELEXPR (TOK_FUNCTION sum (TOK_TABLE_OR_COL count)))) (TOK_GROUPBY (TOK_TABLE_OR_COL uid))))

STAGE DEPENDENCIES:
  Stage-1 is a root stage
  Stage-0 is a root stage

STAGE PLANS:
  Stage: Stage-1
    Map Reduce
      Alias -> Map Operator Tree:
        logs 
          TableScan // 扫描表
            alias: logs
            Select Operator //选择字段
              expressions:
                    expr: uid
                    type: string
                    expr: count
                    type: int
              outputColumnNames: uid, count
              Group By Operator //这里是因为默认设置了hive.map.aggr=true,会在mapper先做一次聚合,减少reduce需要处理的数据
                aggregations:
                      expr: sum(count) //聚集函数
                bucketGroup: false
                keys: //键
                      expr: uid
                      type: string
                mode: hash //hash方式,processHashAggr()
                outputColumnNames: _col0, _col1
                Reduce Output Operator //输出key,value给reducer
                  key expressions:
                        expr: _col0
                        type: string
                  sort order: +
                  Map-reduce partition columns:
                        expr: _col0
                        type: string
                  tag: -1
                  value expressions:
                        expr: _col1
                        type: bigint
      Reduce Operator Tree:
        Group By Operator

          aggregations:
                expr: sum(VALUE._col0)
//聚合
          bucketGroup: false
          keys:
                expr: KEY._col0
                type: string
          mode: mergepartial //合并值
          outputColumnNames: _col0, _col1
          Select Operator //选择字段
            expressions:
                  expr: _col0
                  type: string
                  expr: _col1
                  type: bigint
            outputColumnNames: _col0, _col1
            File Output Operator //输出到文件
              compressed: false
              GlobalTableId: 0
              table:
                  input format: org.apache.hadoop.mapred.TextInputFormat
                  output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

  Stage: Stage-0
    Fetch Operator
      limit: -1
阅读更多
文章标签: hive group-by mapreduce
个人分类: hive
想对作者说点什么? 我来说一句

hive实现原理

2017年11月16日 4.11MB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭