CF 题目集锦 PART 3 #262 div 2 D

【#262 div 2 D. Little Victor and Set


【原题】

D. Little Victor and Set
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Little Victor adores the sets theory. Let us remind you that a set is a group of numbers where all numbers are pairwise distinct. Today Victor wants to find a set of integers S that has the following properties:

  • for all x  the following inequality holds l ≤ x ≤ r;
  • 1 ≤ |S| ≤ k;
  • lets denote the i-th element of the set S as si; value  must be as small as possible.

Help Victor find the described set.

Input

The first line contains three space-separated integers l, r, k (1 ≤ l ≤ r ≤ 1012; 1 ≤ k ≤ min(106, r - l + 1)).

Output

Print the minimum possible value of f(S). Then print the cardinality of set |S|. Then print the elements of the set in any order.

If there are multiple optimal sets, you can print any of them.

Sample test(s)
input
8 15 3
output
1
2
10 11
input
8 30 7
output
0
5
14 9 28 11 16
Note

Operation  represents the operation of bitwise exclusive OR. In other words, it is the XOR operation.


【题意】给定范围L和R,在这之间选P个不同的自然数,其中1<=P<=k,求选出的数最小异或和及某个方案。

【分析】很显然的结论,K^(K+1)=1,其中K是偶数。当K>3时,我们可以选连续的4个自然数使异或和为0。(当然注意要特判R-L+1的大小)。当K=1时,就是L。当K=2时,显然只能构造异或为1的情况。

所有的推论都指向一个问题:当K=3的一般情况怎么做?

【题解】对于那个情况,我一直觉得能贪心构造,但是怎么也想不出简单易行且效率高的算法。

其实很简单。我们设L<=X<Y<Z<=R,然后来贪心构造他们。

在二进制中,异或和为0的情况是1,1,0或0,0,0。显然Z的第一位是1,然后X和Y是0。

因为是贪心,我们要尽量使Y靠近Z(因为如果Z符合范围,Y显然越大越好)。

那么第二位我们就让Y靠近Z。我们把Z那位设成0,X和Y都设成1,即如下形式:

110000000

101111111

011111111

当然脑补可能会萎...

为了少特判,我在R-L+1小的时候直接暴力寻找。

【代码】

#include<cstdio>
#include<algorithm>
#include<iostream>
#define E endl
#define INF 999999999999999ll
#define RE return 0
using namespace std;
typedef long long LL;
LL len,sum,ans,C,wri[15],temp[15],i,S,L,R,k,x,z;
inline void DFS(LL now,LL C,LL sum)
{
  if (now==R+1) 
  {
    if (sum>=ans||!C) return;len=C;ans=sum;
    for (int i=1;i<=C;i++) wri[i]=temp[i];
    return;
  }
  if (now>R) return;
  DFS(now+1,C,sum);if (C+1>k) return;
  temp[C+1]=now;DFS(now+1,C+1,sum^now);
}
int main()
{
  cin>>L>>R>>k;
  if (L==R) {cout<<L<<E<<1<<E<<R;RE;}
  if (R-L<=8) 
  {
    ans=INF;DFS(L,0,0);cout<<ans<<E<<len<<E;
    for (i=1;i<=len;i++) cout<<wri[i]<<' ';RE;
  }
  if (k>3)
  {
    S=(L&1)?L+1:L;
    cout<<0<<E<<4<<E<<S<<' '<<S+1<<' '<<S+2<<' '<<S+3;RE;
  }
  z=3;x=1;
  while (z<=R&&k==3)
  {
    if (x>=L) {cout<<0<<E<<3<<E<<x<<' '<<z-1<<' '<<z;RE;}
    x=x<<1|1;z<<=1;
  }
  if (k==2||k==3) 
  {
    S=(L&1)?L+1:L;
    cout<<1<<E<<2<<E<<S<<' '<<S+1;RE;
  }
  if (k==1||k==3) {cout<<L<<E<<1<<E<<L;RE;}
  return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值